import numpy as np import paddle from paddlevideo.utils import get_logger from .base import BaseMetric from .registry import METRIC logger = get_logger("paddlevideo") @METRIC.register class DepthMetric(BaseMetric): def __init__(self, data_size, batch_size, log_interval=1): """prepare for metrics """ super().__init__(data_size, batch_size, log_interval) self.abs_rel = [] self.sq_rel = [] self.rmse = [] self.rmse_log = [] self.a1 = [] self.a2 = [] self.a3 = [] def update(self, batch_id, data, outputs): """update metrics during each iter """ abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3 = outputs['abs_rel'], outputs['sq_rel'], outputs['rmse'], \ outputs['rmse_log'], outputs['a1'], outputs['a2'],outputs['a3'] # preds ensemble if self.world_size > 1: abs_rel = paddle.distributed.all_reduce( outputs['abs_rel'], op=paddle.distributed.ReduceOp.SUM) / self.world_size sq_rel = paddle.distributed.all_reduce( outputs['sq_rel'], op=paddle.distributed.ReduceOp.SUM) / self.world_size rmse = paddle.distributed.all_reduce( outputs['rmse'], op=paddle.distributed.ReduceOp.SUM) / self.world_size rmse_log = paddle.distributed.all_reduce( outputs['rmse_log'], op=paddle.distributed.ReduceOp.SUM) / self.world_size a1 = paddle.distributed.all_reduce( outputs['a1'], op=paddle.distributed.ReduceOp.SUM) / self.world_size a2 = paddle.distributed.all_reduce( outputs['a2'], op=paddle.distributed.ReduceOp.SUM) / self.world_size a3 = paddle.distributed.all_reduce( outputs['a3'], op=paddle.distributed.ReduceOp.SUM) / self.world_size self.abs_rel.append(abs_rel) self.sq_rel.append(sq_rel) self.rmse.append(rmse) self.rmse_log.append(rmse_log) self.a1.append(a1) self.a2.append(a2) self.a3.append(a3) if batch_id % self.log_interval == 0: logger.info("[TEST] Processing batch {}/{} ...".format( batch_id, self.data_size // (self.batch_size * self.world_size))) def accumulate(self): """accumulate metrics when finished all iters. """ logger.info( '[TEST] finished, abs_rel= {}, sq_rel= {} , rmse= {}, rmse_log= {},' 'a1= {}, a2= {}, a3= {}'.format(np.mean(np.array(self.abs_rel)), np.mean(np.array(self.sq_rel)), np.mean(np.array(self.rmse)), np.mean(np.array(self.rmse_log)), np.mean(np.array(self.a1)), np.mean(np.array(self.a2)), np.mean(np.array(self.a3))))