# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os.path as osp
import copy
import random
import numpy as np
try:
    import lmdb
except ImportError as e:
    print(
        f"Warning! {e}, [lmdb] package and it's dependencies is required for ActBERT."
    )
import pickle
try:
    from paddlenlp.transformers import BertTokenizer
except ImportError as e:
    print(
        f"Warning! {e}, [paddlenlp] package and it's dependencies is required for ActBERT."
    )
from ..registry import DATASETS
from .base import BaseDataset
from ...utils import get_logger

logger = get_logger("paddlevideo")


@DATASETS.register()
class MSRVTTDataset(BaseDataset):
    """MSR-VTT dataset for text-video clip retrieval.
    """
    def __init__(
        self,
        file_path,
        pipeline,
        features_path,
        bert_model="bert-base-uncased",
        padding_index=0,
        max_seq_length=36,
        max_region_num=36,
        max_action_num=5,
        vision_feature_dim=2048,
        action_feature_dim=2048,
        spatials_dim=5,
        data_prefix=None,
        test_mode=False,
    ):
        self.features_path = features_path
        self.bert_model = bert_model
        self.padding_index = padding_index
        self.max_seq_length = max_seq_length
        self.max_region_num = max_region_num
        self._max_action_num = max_action_num
        self.vision_feature_dim = vision_feature_dim
        self.action_feature_dim = action_feature_dim
        self.spatials_dim = spatials_dim
        self._tokenizer = BertTokenizer.from_pretrained(bert_model,
                                                        do_lower_case=True)
        super().__init__(file_path, pipeline, data_prefix, test_mode)
        self.tokenize()
        self.gen_feature()

    def load_file(self):
        """Load index file to get video information."""
        with open(self.file_path) as fin:
            self.image_entries = []
            self.caption_entries = []
            for line in fin.readlines():
                line = line.strip()
                vid_id = line.split(',')[0]
                self.image_entries.append(vid_id)
                self.caption_entries.append({
                    "caption": line.split(',')[1],
                    "vid_id": vid_id
                })
        self.env = lmdb.open(self.features_path)

    def tokenize(self):
        for entry in self.caption_entries:
            tokens = []
            tokens.append("[CLS]")
            for token in self._tokenizer.tokenize(entry["caption"]):
                tokens.append(token)
            tokens.append("[SEP]")
            tokens = self._tokenizer.convert_tokens_to_ids(tokens)

            segment_ids = [0] * len(tokens)
            input_mask = [1] * len(tokens)

            if len(tokens) < self.max_seq_length:
                padding = [self.padding_index
                           ] * (self.max_seq_length - len(tokens))
                tokens = tokens + padding
                input_mask += padding
                segment_ids += padding

            entry["token"] = np.array(tokens).astype('int64')
            entry["input_mask"] = np.array(input_mask)
            entry["segment_ids"] = np.array(segment_ids).astype('int64')

    def get_image_feature(self, video_id):
        video_id = str(video_id).encode()
        with self.env.begin(write=False) as txn:
            item = pickle.loads(txn.get(video_id))
            video_id = item["video_id"]
            image_h = int(item["image_h"])
            image_w = int(item["image_w"])

            features = item["features"].reshape(-1, self.vision_feature_dim)
            boxes = item["boxes"].reshape(-1, 4)

            num_boxes = features.shape[0]
            g_feat = np.sum(features, axis=0) / num_boxes
            num_boxes = num_boxes + 1
            features = np.concatenate(
                [np.expand_dims(g_feat, axis=0), features], axis=0)

            action_features = item["action_features"].reshape(
                -1, self.action_feature_dim)

            image_location = np.zeros((boxes.shape[0], self.spatials_dim),
                                      dtype=np.float32)
            image_location[:, :4] = boxes
            image_location[:,
                           4] = ((image_location[:, 3] - image_location[:, 1]) *
                                 (image_location[:, 2] - image_location[:, 0]) /
                                 (float(image_w) * float(image_h)))

            image_location[:, 0] = image_location[:, 0] / float(image_w)
            image_location[:, 1] = image_location[:, 1] / float(image_h)
            image_location[:, 2] = image_location[:, 2] / float(image_w)
            image_location[:, 3] = image_location[:, 3] / float(image_h)

            g_location = np.array([0, 0, 1, 1, 1])
            image_location = np.concatenate(
                [np.expand_dims(g_location, axis=0), image_location], axis=0)
        return features, num_boxes, image_location, action_features

    def gen_feature(self):
        num_inst = len(self.image_entries)  #1000
        self.features_all = np.zeros(
            (num_inst, self.max_region_num, self.vision_feature_dim))
        self.action_features_all = np.zeros(
            (num_inst, self._max_action_num, self.action_feature_dim))
        self.spatials_all = np.zeros(
            (num_inst, self.max_region_num, self.spatials_dim))
        self.image_mask_all = np.zeros((num_inst, self.max_region_num))
        self.action_mask_all = np.zeros((num_inst, self._max_action_num))

        for i, image_id in enumerate(self.image_entries):
            features, num_boxes, boxes, action_features = self.get_image_feature(
                image_id)

            mix_num_boxes = min(int(num_boxes), self.max_region_num)
            mix_boxes_pad = np.zeros((self.max_region_num, self.spatials_dim))
            mix_features_pad = np.zeros(
                (self.max_region_num, self.vision_feature_dim))

            image_mask = [1] * (int(mix_num_boxes))
            while len(image_mask) < self.max_region_num:
                image_mask.append(0)
            action_mask = [1] * (self._max_action_num)
            while len(action_mask) < self._max_action_num:
                action_mask.append(0)

            mix_boxes_pad[:mix_num_boxes] = boxes[:mix_num_boxes]
            mix_features_pad[:mix_num_boxes] = features[:mix_num_boxes]

            self.features_all[i] = mix_features_pad
            x = action_features.shape[0]
            self.action_features_all[i][:x] = action_features[:]
            self.image_mask_all[i] = np.array(image_mask)
            self.action_mask_all[i] = np.array(action_mask)
            self.spatials_all[i] = mix_boxes_pad

        self.features_all = self.features_all.astype("float32")
        self.action_features_all = self.action_features_all.astype("float32")
        self.image_mask_all = self.image_mask_all.astype("int64")
        self.action_mask_all = self.action_mask_all.astype("int64")
        self.spatials_all = self.spatials_all.astype("float32")

    def prepare_train(self, idx):
        pass

    def prepare_test(self, idx):
        entry = self.caption_entries[idx]
        caption = entry["token"]
        input_mask = entry["input_mask"]
        segment_ids = entry["segment_ids"]

        target_all = np.zeros(1000)
        for i, image_id in enumerate(self.image_entries):
            if image_id == entry["vid_id"]:
                target_all[i] = 1

        return (
            caption,
            self.action_features_all,
            self.features_all,
            self.spatials_all,
            segment_ids,
            input_mask,
            self.image_mask_all,
            self.action_mask_all,
            target_all,
        )

    def __len__(self):
        return len(self.caption_entries)