import cv2 import time from tqdm import tqdm from ultralytics import YOLO from ultralytics.yolo.utils.plotting import Annotator from d_face import face_detection def analysis_video(source_path,output_path,people_modle_path,face_modle_path,action_modle_path): model_coco = YOLO(people_modle_path) action_model = YOLO(action_modle_path) cap = cv2.VideoCapture(source_path) # 直接从视频的第 frameToStart 帧开始 frameToStart = 0 cap.set(cv2.CAP_PROP_POS_FRAMES, frameToStart) fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fourcc = cv2.VideoWriter_fourcc(*'mp4v') output_movie = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) if frameToStart != 0: count = frameToStart else: count = 0 # 标记有没有出现过拉门的动作 action_flag = { "action":0, "action_frame":[] } # 标记有没有出现过人脸 face_flag = { "face":0, "frame":[] } # 定义帧数字典 XJ_dict = { "head":0, "tail":0 } while cap.isOpened(): # Read a frame from the video success, frame = cap.read() count += 1 if success: # 第一步:用COCO数据集推理 results_coco = model_coco(frame) action_result = action_model(frame) for r in results_coco: annotator = Annotator(frame, line_width=1) boxes = r.boxes for box in boxes: b = box.xyxy[0] # get box coordinates in (x1,y1,x2,y2) format #tensor([ 677.5757, 147.2737, 1182.3381, 707.2565]) b_i = b.int() + 1 c = box.cls # tensor([0.]) confidence = float(box.conf) confidence = round(confidence, 2) # 过滤置信度0.5以下目标 if confidence < 0.5: continue if c.int() == 1: if XJ_dict['head'] == 0 : XJ_dict['head'] = count else: XJ_dict['tail'] = count crop_img = frame[b_i[1]:b_i[3],b_i[0]:b_i[2]] frame = face_detection(face_modle_path,frame,crop_img,b_i[0],b_i[1],b_i[2],b_i[3],face_flag,count) annotator.box_label(b, model_coco.names[int(c)]+str(confidence),(0,0,255)) for r_a in action_result: annotator_a = Annotator(frame, line_width=1) boxes_a = r_a.boxes for box_a in boxes_a: b_a = box_a.xyxy[0] # get box coordinates in (x1,y1,x2,y2) format #tensor([ 677.5757, 147.2737, 1182.3381, 707.2565]) c_a = box_a.cls # tensor([0.]) confidence_a = float(box_a.conf) confidence_a = round(confidence_a, 2) # 过滤置信度0.5以下目标 if confidence_a < 0.5: continue # 当类别为check if c_a.int() == 1: action_flag["action"] += 1 action_flag["action_frame"].append(count) annotator_a.box_label(b_a, action_model.names[int(c_a)]+str(confidence_a),(255,0,0)) annotated_a_frame_coco = annotator_a.result() output_movie.write(annotated_a_frame_coco) else: # Break the loop if the end of the video is reached break cap.release() output_movie.release() diff = round((XJ_dict["tail"]-XJ_dict["head"])/fps,2) fina_frame = [round(_ /fps,2) for _ in face_flag["frame"]] s = ', '.join(map(str, fina_frame)) action_frame = [round(_ /fps,2) for _ in action_flag["action_frame"]] s_action = ', '.join(map(str, action_frame)) return diff,face_flag,s,action_flag,s_action