import os import cv2 import argparse import numpy as np class SCRFD(): def __init__(self, onnxmodel, confThreshold=0.5, nmsThreshold=0.5): self.inpWidth = 640 self.inpHeight = 640 self.confThreshold = confThreshold self.nmsThreshold = nmsThreshold self.net = cv2.dnn.readNet(onnxmodel) self.keep_ratio = True self.fmc = 3 self._feat_stride_fpn = [8, 16, 32] self._num_anchors = 2 def resize_image(self, srcimg): padh, padw, newh, neww = 0, 0, self.inpHeight, self.inpWidth if self.keep_ratio and srcimg.shape[0] != srcimg.shape[1]: hw_scale = srcimg.shape[0] / srcimg.shape[1] if hw_scale > 1: newh, neww = self.inpHeight, int(self.inpWidth / hw_scale) img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA) padw = int((self.inpWidth - neww) * 0.5) img = cv2.copyMakeBorder(img, 0, 0, padw, self.inpWidth - neww - padw, cv2.BORDER_CONSTANT, value=0) # add border else: newh, neww = int(self.inpHeight * hw_scale) + 1, self.inpWidth img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA) padh = int((self.inpHeight - newh) * 0.5) img = cv2.copyMakeBorder(img, padh, self.inpHeight - newh - padh, 0, 0, cv2.BORDER_CONSTANT, value=0) else: img = cv2.resize(srcimg, (self.inpWidth, self.inpHeight), interpolation=cv2.INTER_AREA) return img, newh, neww, padh, padw def distance2bbox(self, points, distance, max_shape=None): x1 = points[:, 0] - distance[:, 0] y1 = points[:, 1] - distance[:, 1] x2 = points[:, 0] + distance[:, 2] y2 = points[:, 1] + distance[:, 3] if max_shape is not None: x1 = x1.clamp(min=0, max=max_shape[1]) y1 = y1.clamp(min=0, max=max_shape[0]) x2 = x2.clamp(min=0, max=max_shape[1]) y2 = y2.clamp(min=0, max=max_shape[0]) return np.stack([x1, y1, x2, y2], axis=-1) def distance2kps(self, points, distance, max_shape=None): preds = [] for i in range(0, distance.shape[1], 2): px = points[:, i % 2] + distance[:, i] py = points[:, i % 2 + 1] + distance[:, i + 1] if max_shape is not None: px = px.clamp(min=0, max=max_shape[1]) py = py.clamp(min=0, max=max_shape[0]) preds.append(px) preds.append(py) return np.stack(preds, axis=-1) def detect(self, srcimg,face_flag,count): img, newh, neww, padh, padw = self.resize_image(srcimg) blob = cv2.dnn.blobFromImage(img, 1.0 / 128, (self.inpWidth, self.inpHeight), (127.5, 127.5, 127.5), swapRB=True) # Sets the input to the network self.net.setInput(blob) # Runs the forward pass to get output of the output layers outs = self.net.forward(self.net.getUnconnectedOutLayersNames()) # inference output scores_list, bboxes_list, kpss_list = [], [], [] for idx, stride in enumerate(self._feat_stride_fpn): scores = outs[idx * self.fmc][0] bbox_preds = outs[idx * self.fmc + 1][0] * stride kps_preds = outs[idx * self.fmc + 2][0] * stride height = blob.shape[2] // stride width = blob.shape[3] // stride anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) anchor_centers = (anchor_centers * stride).reshape((-1, 2)) if self._num_anchors > 1: anchor_centers = np.stack([anchor_centers] * self._num_anchors, axis=1).reshape((-1, 2)) pos_inds = np.where(scores >= self.confThreshold)[0] bboxes = self.distance2bbox(anchor_centers, bbox_preds) pos_scores = scores[pos_inds] pos_bboxes = bboxes[pos_inds] scores_list.append(pos_scores) bboxes_list.append(pos_bboxes) kpss = self.distance2kps(anchor_centers, kps_preds) # kpss = kps_preds kpss = kpss.reshape((kpss.shape[0], -1, 2)) pos_kpss = kpss[pos_inds] kpss_list.append(pos_kpss) scores = np.vstack(scores_list).ravel() # bboxes = np.vstack(bboxes_list) / det_scale # kpss = np.vstack(kpss_list) / det_scale bboxes = np.vstack(bboxes_list) kpss = np.vstack(kpss_list) bboxes[:, 2:4] = bboxes[:, 2:4] - bboxes[:, 0:2] ratioh, ratiow = srcimg.shape[0] / newh, srcimg.shape[1] / neww bboxes[:, 0] = (bboxes[:, 0] - padw) * ratiow bboxes[:, 1] = (bboxes[:, 1] - padh) * ratioh bboxes[:, 2] = bboxes[:, 2] * ratiow bboxes[:, 3] = bboxes[:, 3] * ratioh kpss[:, :, 0] = (kpss[:, :, 0] - padw) * ratiow kpss[:, :, 1] = (kpss[:, :, 1] - padh) * ratioh indices = cv2.dnn.NMSBoxes(bboxes.tolist(), scores.tolist(), self.confThreshold, self.nmsThreshold) # 根据阈值拦截后的人脸框元组 if indices: face_flag["face"] += 1 face_flag["frame"].append(count) for i in indices: i = i[0] xmin, ymin, xamx, ymax = int(bboxes[i, 0]), int(bboxes[i, 1]), int(bboxes[i, 0] + bboxes[i, 2]), int(bboxes[i, 1] + bboxes[i, 3]) cv2.rectangle(srcimg, (xmin, ymin), (xamx, ymax), (0, 0, 255), thickness=2) for j in range(5): cv2.circle(srcimg, (int(kpss[i, j, 0]), int(kpss[i, j, 1])), 1, (0,255,0), thickness=-1) cv2.putText(srcimg, str(round(scores[i], 3)), (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=1) return srcimg def face_detection(onnxmodel,image,crop_image,x1,y1,x2,y2,face_flag,count): mynet = SCRFD(onnxmodel, confThreshold=0.8, nmsThreshold=0.5) outimg= mynet.detect(crop_image,face_flag,count) image[y1:y2,x1:x2] = outimg return image