import cv2 from tqdm import tqdm from ultralytics import YOLO from ultralytics.yolo.utils.plotting import Annotator import os def analysis_yolov8(images, model_coco,confidence): frame = images # 第一步:用COCO数据集推理 results_coco = model_coco(frame) # print(results_coco) if results_coco: for r in results_coco: boxes = r.boxes re_list = [] for box in boxes: b = box.xyxy[0] # get box coordinates in (top, left, bottom, right) format c = box.cls # 保存标签和坐标值作为返回结果 blist = b.tolist() labels_name = model_coco.names[int(c)] confidence = float(box.conf) confidence = round(confidence, 2) # 过滤置信度0.5以下目标 if confidence < confidence: continue re_dict = {labels_name:blist} re_list.append(re_dict) return re_list # if __name__ == '__main__': # model_coco = YOLO("model_files/bk1.pt") # frame = cv2.imread("E:/BANK_XZ/data_file/0000162.jpg") # analysis_video(frame, model_coco,confidence=0.5)