7月31日更新PP_TSMv2模型推理输出

V0.1.0
jiangxt 2 years ago
parent ac998da682
commit fe0a154fe3

@ -1,29 +1,22 @@
from export_model import trim_config,get_input_spec
from predict import parse_file_paths
import os
import os.path as osp
import paddle
from paddlevideo.utils import get_config
from paddlevideo.modeling.builder import build_model
from paddle.jit import to_static
from paddlevideo.utils.config import get_config
from paddle.inference import Config, create_predictor
from utils import build_inference_helper
import time
import warnings
warnings.filterwarnings("ignore")
class PP_TSMv2(object):
class PP_TSMv2_predict(object):
"""PP-TSMv2模型中常用的参数初始化"""
def __init__(self,use_gpu=True,batch_size=1,ir_optim=True,\
disable_glog=False,save_name=None,enable_mklddn=False,\
def __init__(self,use_gpu=True,ir_optim=True,
disable_glog=False,save_name=None,enable_mklddn=False,
precision="fp32",gpu_mem=8000,cpu_threads=None):
self.use_gpu = use_gpu #是否使用GPU
self.cpu_threads = cpu_threads #cpu线程数
self.batch_size = batch_size
self.ir_optim = ir_optim #是否开启IR优化
self.disable_glog = disable_glog
self.gpu_mem = gpu_mem #GPU存储大小
@ -31,6 +24,25 @@ class PP_TSMv2(object):
self.precision = precision #mfldnn精度
self.save_name = save_name #转化推理模型存放名称
def parse_file_paths(self,input_path: str) -> list:
"""
获取模型输入数据
input_path:模型的输入文件
"""
if osp.isfile(input_path):
files = [
input_path,
]
else:
files = os.listdir(input_path)
files = [
file for file in files
if (file.endswith(".avi") or file.endswith(".mp4"))
]
files = [osp.join(input_path, file) for file in files]
return files
def create_paddle_predictor(self,model_f,pretr_p,cfg):
"""
@ -66,47 +78,6 @@ class PP_TSMv2(object):
return config,predictor
def exportmodel(self,config,pretr_p,output_p):
"""
加载训练后的模型参数生成可推理预测的模型
pretr_p:训练后的参数存放文件
output_p:转化为可推理模型的存放路径
"""
cfg, model_name = trim_config(get_config(config, overrides=None, show=False))
print(f"Building model({model_name})...")
#创建推理模型
model = build_model(cfg.MODEL)
assert osp.isfile(
pretr_p
), f"pretrained params ({pretr_p} is not a file path.)"
if not os.path.isdir(output_p):
os.makedirs(output_p)
print(f"Loading params from ({pretr_p})...")
# 加载推理模型参数
params = paddle.load(pretr_p)
model.set_dict(params)
model.eval()
for layer in model.sublayers():
if hasattr(layer, "rep") and not getattr(layer, "is_repped"):
layer.rep()
input_spec = get_input_spec(cfg.INFERENCE, model_name)
#将模型转化为静态图以及模型的保存
model = to_static(model, input_spec=input_spec)
paddle.jit.save(model,osp.join(output_p, model_name if self.save_name is None else self.save_name))
print(f"model ({model_name}) has been already saved in ({output_p}).")
return model
def predict(self,config,input_f,batch_size,model_f,params_f):
@ -118,7 +89,7 @@ class PP_TSMv2(object):
model_f:可推理模型存放的路径+配置文件
params_f:可推理模型的参数
"""
result = {}
cfg = get_config(config, overrides=None, show=False)
model_name = cfg.model_name
print(f"Inference model({model_name})...")
@ -139,7 +110,7 @@ class PP_TSMv2(object):
for item in output_names:
output_tensor_list.append(predictor.get_output_handle(item))
files = parse_file_paths(input_f)
files = self.parse_file_paths(input_f)#input_path=input_f
batch_num = batch_size
for st_idx in range(0, len(files), batch_num):
@ -158,22 +129,26 @@ class PP_TSMv2(object):
batched_outputs.append(output_tensor_list[j].copy_to_cpu())
#输出推理结果
InferenceHelper.postprocess(batched_outputs,True)
res = InferenceHelper.postprocess(batched_outputs,False,True)
result["video_id"] = res[0]["video_id"]
result["topk_class"] = res[0]["topk_class"].tolist()[0]
result["topk_scores"] = res[0]["topk_scores"].tolist()[0]
return result
def main():
config='/home/xznsh/data/PaddleVideo/configs/recognition/pptsm/v2/pptsm_lcnet_k400_16frames_uniform.yaml' #配置文件地址
input_file='/home/xznsh/data/PaddleVideo/data/dataset/video_seg_re_hand' #待推理数据集存放的地址
pretrain_params='/home/xznsh/data/PaddleVideo/output/ppTSMv2/ppTSMv2_best.pdparams' #训练后模型参数文件存放
output_path='/home/xznsh/data/PaddleVideo/inference/infer1' #推理模型存放地址
model_file='/home/xznsh/data/PaddleVideo/inference/infer1/ppTSMv2.pdmodel' #推理模型存放地址
params_file='/home/xznsh/data/PaddleVideo/inference/infer1/ppTSMv2.pdiparams' #推理模型参数存放地址
batch_size= 1
PP_TSMv2().exportmodel(config,pretrain_params,output_path) #输出推理模型
time.sleep(2)
PP_TSMv2().predict(config,input_file,batch_size,model_file,params_file) #推理模型推理、预测
config='D:/download/PaddleVideo1/configs/recognition/pptsm/v2/pptsm_lcnet_k400_16frames_uniform.yaml' #配置文件地址
input_file='D:/download/PaddleVideo1/data/dataset/video_seg_no_hand/test02_84.avi' #待推理数据集存放的地址
model_file='D:/download/PaddleVideo1/output/ppTSMv2.pdmodel' #推理模型存放地址
params_file='D:/download/PaddleVideo1/output/ppTSMv2.pdiparams' #推理模型参数存放地址
batch_size= 1 #输出推理模型
t = PP_TSMv2_predict().predict(config,input_file,batch_size,model_file,params_file) #推理模型推理、预测
print(t)
if __name__ == "__main__":

Loading…
Cancel
Save