You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
5.5 KiB
Python
149 lines
5.5 KiB
Python
2 years ago
|
from export_model import trim_config,get_input_spec
|
||
|
from predict import parse_file_paths
|
||
|
import os
|
||
|
import os.path as osp
|
||
|
import paddle
|
||
|
from paddlevideo.utils import get_config
|
||
|
from paddlevideo.modeling.builder import build_model
|
||
|
from paddle.jit import to_static
|
||
|
from paddle.inference import Config, create_predictor
|
||
|
from utils import build_inference_helper
|
||
|
import time
|
||
|
import warnings
|
||
|
warnings.filterwarnings("ignore")
|
||
|
|
||
|
|
||
|
class PP_TSMv2(object):
|
||
|
|
||
|
def __init__(self,use_gpu=True,batch_size=1,ir_optim=True,\
|
||
|
disable_glog=False,save_name=None,enable_mklddn=False,\
|
||
|
precision="fp32",gpu_mem=8000,cpu_threads=None,time_test_file=False):
|
||
|
|
||
|
self.use_gpu = use_gpu
|
||
|
self.cpu_threads = cpu_threads
|
||
|
self.batch_size = batch_size
|
||
|
self.ir_optim = ir_optim
|
||
|
self.disable_glog = disable_glog
|
||
|
self.gpu_mem = gpu_mem
|
||
|
self.enable_mkldnn = enable_mklddn
|
||
|
self.precision = precision
|
||
|
self.save_name = save_name
|
||
|
self.time_test_file = time_test_file
|
||
|
|
||
|
def create_paddle_predictor(self,model_f,pretr_p,cfg):
|
||
|
|
||
|
config = Config(model_f,pretr_p)
|
||
|
if self.use_gpu:
|
||
|
config.enable_use_gpu(self.gpu_mem,0)
|
||
|
else:
|
||
|
config.disable_gpu()
|
||
|
if self.cpu_threads:
|
||
|
config.set_cpu_math_library_num_threads(self.cpu_threads)
|
||
|
if self.enable_mkldnn:
|
||
|
config.set_mkldnn_cache_capacity(10)
|
||
|
config.enable_mkldnn()
|
||
|
if self.precision == "fp16":
|
||
|
config.enable_mkldnn_bfloat16()
|
||
|
|
||
|
config.switch_ir_optim(self.ir_optim)
|
||
|
|
||
|
config.enable_memory_optim()
|
||
|
config.switch_use_feed_fetch_ops(False)
|
||
|
|
||
|
if self.disable_glog:
|
||
|
config.disable_glog_info()
|
||
|
|
||
|
predictor = create_predictor(config)
|
||
|
|
||
|
return config,predictor
|
||
|
|
||
|
|
||
|
def exportmodel(self,config,pretr_p,output_p):
|
||
|
|
||
|
cfg, model_name = trim_config(get_config(config, overrides=None, show=False))
|
||
|
# pretr_p = str(pretr_p)
|
||
|
|
||
|
print(f"Building model({model_name})...")
|
||
|
model = build_model(cfg.MODEL)
|
||
|
assert osp.isfile(
|
||
|
pretr_p
|
||
|
), f"pretrained params ({pretr_p} is not a file path.)"
|
||
|
|
||
|
if not os.path.isdir(output_p):
|
||
|
os.makedirs(output_p)
|
||
|
|
||
|
print(f"Loading params from ({pretr_p})...")
|
||
|
params = paddle.load(pretr_p)
|
||
|
model.set_dict(params)
|
||
|
|
||
|
model.eval()
|
||
|
|
||
|
for layer in model.sublayers():
|
||
|
if hasattr(layer, "rep") and not getattr(layer, "is_repped"):
|
||
|
layer.rep()
|
||
|
|
||
|
input_spec = get_input_spec(cfg.INFERENCE, model_name)
|
||
|
model = to_static(model, input_spec=input_spec)
|
||
|
paddle.jit.save(model,osp.join(output_p, model_name if self.save_name is None else self.save_name))
|
||
|
print(f"model ({model_name}) has been already saved in ({output_p}).")
|
||
|
return model
|
||
|
|
||
|
def predict(self,config,input_f,batch_size,model_f,params_f):
|
||
|
|
||
|
cfg = get_config(config, overrides=None, show=False)
|
||
|
model_name = cfg.model_name
|
||
|
print(f"Inference model({model_name})...")
|
||
|
InferenceHelper = build_inference_helper(cfg.INFERENCE)
|
||
|
|
||
|
_ , predictor = self.create_paddle_predictor(model_f,params_f,cfg) # 要改 model_f,pretr_p,cfg
|
||
|
|
||
|
# get input_tensor and output_tensor
|
||
|
input_names = predictor.get_input_names()
|
||
|
output_names = predictor.get_output_names()
|
||
|
input_tensor_list = []
|
||
|
output_tensor_list = []
|
||
|
for item in input_names:
|
||
|
input_tensor_list.append(predictor.get_input_handle(item))
|
||
|
for item in output_names:
|
||
|
output_tensor_list.append(predictor.get_output_handle(item))
|
||
|
|
||
|
files = parse_file_paths(input_f)
|
||
|
|
||
|
batch_num = batch_size
|
||
|
for st_idx in range(0, len(files), batch_num):
|
||
|
ed_idx = min(st_idx + batch_num, len(files))
|
||
|
|
||
|
batched_inputs = InferenceHelper.preprocess_batch(files[st_idx:ed_idx])
|
||
|
for i in range(len(input_tensor_list)):
|
||
|
input_tensor_list[i].copy_from_cpu(batched_inputs[i])
|
||
|
predictor.run()
|
||
|
|
||
|
batched_outputs = []
|
||
|
for j in range(len(output_tensor_list)):
|
||
|
batched_outputs.append(output_tensor_list[j].copy_to_cpu())
|
||
|
|
||
|
InferenceHelper.postprocess(batched_outputs,True)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def main():
|
||
|
|
||
|
config='/home/xznsh/data/PaddleVideo/configs/recognition/pptsm/v2/pptsm_lcnet_k400_16frames_uniform.yaml' #配置文件地址
|
||
|
input_file='/home/xznsh/data/PaddleVideo/data/dataset/video_seg_re_hand' #推理数据集存放的地址
|
||
|
pretrain_params='/home/xznsh/data/PaddleVideo/output/ppTSMv2/ppTSMv2_best.pdparams' #训练后模型参数文件存放
|
||
|
output_path='/home/xznsh/data/PaddleVideo/inference/infer1' #推理模型存放地址
|
||
|
model_file='/home/xznsh/data/PaddleVideo/inference/infer1/ppTSMv2.pdmodel' #推理模型存放地址
|
||
|
params_file='/home/xznsh/data/PaddleVideo/inference/infer1/ppTSMv2.pdiparams' #推理模型参数存放地址
|
||
|
batch_size= 1
|
||
|
PP_TSMv2().exportmodel(config,pretrain_params,output_path) #输出推理模型
|
||
|
time.sleep(2)
|
||
|
PP_TSMv2().predict(config,input_file,batch_size,model_file,params_file)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|
||
|
|
||
|
|
||
|
|