XZNSH-Code-AI/Bank_second_part/detect_process/video_process.py

623 lines
26 KiB
Python

import cv2
import os
import time
import mediapipe as mp
from ultralytics import YOLO
import queue
import threading
from config import Q_SZ
from personDet import analysis_yolov8
import tools_function
from holisticDet import MediapipeProcess
import mediapipe_detection_image
from PP_TSMv2_infer import PP_TSMv2_predict
import shutil
import json
class DealVideo():
def __init__(self,video_file,video_save_file,person_model,mediapipe_model,pptsmv2_model):
'''
加载数据
'''
self.video_file = video_file
self.video_save_file = video_save_file
# 初始化模型
self.person_model = person_model
self.mediapipe_model = mediapipe_model
self.predictor = pptsmv2_model[1]
self.infer = pptsmv2_model[0]
self.batch_size = 1
# 队列
self.videoQueue = queue.Queue(maxsize=Q_SZ)
self.videoQueue2 = queue.Queue(maxsize=Q_SZ)
self.cutbboxQueue = queue.Queue(maxsize=0)
self.videodetQueue = queue.Queue(maxsize=0)
self.videoQueue3 = queue.Queue(maxsize=0)
self.videoreturnQueue = queue.Queue(maxsize=0)
#线程
self.get_video_listThread = threading.Thread(target=self.get_video_list)
self.get_video_frameThread = threading.Thread(target=self.get_video_frame)
self.write_videoThread = threading.Thread(target=self.write_video)
self.head_hands_detThread = threading.Thread(target=self.head_hands_det)
self.video_select_dectThread = threading.Thread(target=self.video_select_dect)
self.select_video_pathThread = threading.Thread(target=self.select_video_path)
self.analysis_return_meassageThread = threading.Thread(target=self.analysis_return_meassage)
def get_video_list(self):
'''
获取数据文件
'''
if os.path.isdir(self.video_file):
video_ext = [".mp4", ".avi",".MP4"]
for maindir, subdir, file_name_list in os.walk(self.video_file):
for filename in file_name_list:
apath = os.path.join(maindir, filename)
ext = os.path.splitext(apath)[1]
if ext in video_ext:
self.videoQueue.put(apath)
else:
self.videoQueue.put(self.video_file)
def get_video_frame(self):
'''
对视频进行分帧每一帧都保存队列
'''
while True:
if self.videoQueue.empty():
time.sleep(1)
else:
video_path = self.videoQueue.get()
# video_basename = os.path.basename(video_path).split('.')[0]
# print('video_path:',video_path)
cap = cv2.VideoCapture(video_path)
video_fps = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# frame_list = []
count_fps = 0
frame_result_contact = []
count_fps_del = 0
while cap.isOpened():
success, frame = cap.read()
if not success:
print(video_path,"Ignoring empty camera frame.")
# print('video_fps:',video_fps,'count_fps:',count_fps)
break
# print('count_fps_read_video=',count_fps)
imgsize = frame.shape
person_det = analysis_yolov8(frame=frame,
model_coco=self.person_model,
confidence_set=0.5)
person_list = tools_function.get_dict_values(person_det)
if frame_result_contact:
start_fps = frame_result_contact[0]['fps']
else:
start_fps = count_fps
if count_fps == (video_fps - 1):
video_end = True
else:
video_end = False
if person_list:
count_fps_del_re,updata_result_contact = self.analysis_by_bbox(imgsize=imgsize,
detect_result=person_list,
dertpara=4,
start_fps=start_fps,
now_fps=count_fps,
label_name='person',
video_path=video_path,
frame_result_contact=frame_result_contact,
parameter_fps=150,
count_fps_del=count_fps_del,
video_end=video_end
)
count_fps_del = count_fps_del_re
frame_result_contact = updata_result_contact
count_fps += 1
def head_hands_det(self):
# print('head_hands_detaohgaogh')
while True:
if self.videoQueue3.empty():
time.sleep(1)
else:
t0 = time.time()
video_path = self.videoQueue3.get()
# print('video_path_head_hands_det:',video_path)
cap = cv2.VideoCapture(video_path)
video_fps = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# frame_list = []
count_fps = 0
head_result_contact = []
hands_result_contact = []
count_fps_del_head = 0
count_fps_del_hand = 0
while cap.isOpened():
success, frame = cap.read()
if not success:
print(video_path,"Ignoring empty camera frame.")
# print('count_fps:',count_fps,'video_fps:',video_fps)
break
# print('count_fps_read_video=',count_fps)
imgsize = frame.shape
# 模型推理
hh_result = MediapipeProcess.mediapipe_det(image=frame,
holistic=self.mediapipe_model)
hh_result_dict = MediapipeProcess.get_analysis_result(image=frame,results=hh_result)
# # 获得当前坐标列表
head_result = hh_result_dict['face_bbox']
head_result_1 = tools_function.select_list(head_result)
hands_result = hh_result_dict['hand_bbox']
hands_result_1 = tools_function.select_list(hands_result)
if count_fps == (video_fps - 1):
# print('count_fps:',count_fps,'video_fps:',video_fps)
video_end = True
else:
video_end = False
# 统一修正坐标,分别对头和手进行分析
if head_result_1:
if head_result_contact:
start_fps = head_result_contact[0]['fps']
else:
start_fps = count_fps
count_fps_del_re,updata_result_contact = self.analysis_by_bbox(imgsize=imgsize,
detect_result=head_result_1,
dertpara=1,
start_fps=start_fps,
now_fps=count_fps,
label_name='head',
video_path=video_path,
frame_result_contact=head_result_contact,
parameter_fps=80,
count_fps_del=count_fps_del_head,
video_end=video_end
)
count_fps_del_head = count_fps_del_re
head_result_contact = updata_result_contact
if hands_result_1:
if hands_result_contact:
start_fps = hands_result_contact[0]['fps']
else:
start_fps = count_fps
count_fps_del_re,updata_result_contact = self.analysis_by_bbox(imgsize=imgsize,
detect_result=hands_result_1,
dertpara=2,
start_fps=start_fps,
now_fps=count_fps,
label_name='hands',
video_path=video_path,
frame_result_contact=hands_result_contact,
parameter_fps=80,
count_fps_del=count_fps_del_hand,
video_end=video_end
)
count_fps_del_hand = count_fps_del_re
hands_result_contact = updata_result_contact
# print(count_fps,'----------------hands_result_1-------------------------------',hands_result_1)
# print(count_fps,"-------------------------updata_result_contact----------------------:",updata_result_contact)
count_fps += 1
def video_select_dect(self):
while True:
if self.videodetQueue.empty():
time.sleep(5)
else:
video_path = self.videodetQueue.get()
try:
result_list = PP_TSMv2_predict().predict(input_f=video_path,
batch_size=self.batch_size,
predictor=self.predictor,
InferenceHelper=self.infer)
if result_list['topk_scores'] > 0.9:
video_base_name = os.path.basename(video_path)
video_save_select_path = self.video_save_file + '/' + 'video_select_dect/'+ str(result_list['topk_class'])
os.makedirs(video_save_select_path, exist_ok=True)
video_save = os.path.join(video_save_select_path, video_base_name)
os.rename(video_path, video_save)
self.videoreturnQueue.put(video_save)
print("result_list_video_select_dect:",result_list)
except Exception as e:
print(e)
def analysis_by_bbox(self,imgsize,detect_result,dertpara,start_fps,now_fps,label_name,video_path,frame_result_contact,parameter_fps,count_fps_del,video_end):
'''
imgsize:图片的尺寸,
detect_result:检测到的图像的结果,bboxlist
dertpara:scale_factor缩放因子大于 1 表示放大小于 1 表示缩小
start_fps: 对比列表中的起始帧
now_fpsl:当前帧率
label_name:用于分析的检测类别
video_path:视频路径
frame_result_contact:对比列表
parameter_fps:统计截止时间
count_fps_del:统计前后帧未出现次数
'''
bbox_list = tools_function.para_list_correction(images_size=imgsize,bbox_list=detect_result,dertpara=dertpara)
count_fps_del_re,update_frame_result_contact = self.get_cut_message(fps1=now_fps,
label_name = label_name,
re_list=bbox_list,
video_path=video_path,
frame_result_contact=frame_result_contact,
parameter_fps=parameter_fps,
count_fps_del=count_fps_del,
video_end=video_end)
# count_fps_del_re,updata_result_contact = self.get_continue_keys(count_fps_del=count_fps_del,
# continue_para=continue_para,
# start_fps=start_fps,
# now_fps=now_fps,
# frame_result_contact=frame_result_contact,
# update_frame_result_contact=update_frame_result_contact)\
return count_fps_del_re,update_frame_result_contact
def get_cut_message(self,fps1,label_name,re_list,video_path,frame_result_contact,parameter_fps,count_fps_del,video_end):
# continue_para = False
if not frame_result_contact:
bbox_list_all = tools_function.change_list_dict(fps1=fps1,re_list=re_list)
frame_result_contact = bbox_list_all
# print("frame_result_contact:",frame_result_contact)
else:
example_dict_list = frame_result_contact
cut_list,example_lst,re_dict_lst = tools_function.analysis_re01_list(example_list=example_dict_list,
result_list=re_list)
# 有目标减少情况
if example_lst:
# 截图保存视频
# continue_para = True
# cut_dict = {'video_path':video_path,'label_name':label_name,"stop_fps":fps1,'bbox_list':example_lst}
start_fps = example_lst[0]['fps']
if count_fps_del <= 5:
frame_result_contact = frame_result_contact
count_fps_del = count_fps_del + 1
# else:
if (fps1 - start_fps) < 15:
frame_result_contact = frame_result_contact
else:
cut_dict = {'video_path':video_path,'label_name':label_name,"stop_fps":fps1,'bbox_list':example_lst}
frame_result_contact = [item for item in frame_result_contact if item not in example_lst]
self.cutbboxQueue.put(cut_dict)
# 有新添加目标情况
if re_dict_lst:
# 对比示例列表更新
update_list = tools_function.change_list_dict(fps1=fps1,re_list=re_dict_lst)
frame_result_contact = frame_result_contact + update_list
# 统计截止时间
time_out_list = tools_function.statistics_fps(fps_now=fps1,re_list=frame_result_contact,parameter=parameter_fps)
if time_out_list:
# 裁剪保存视频
# bbox_list = Process_tools.change_dict_list(time_out_list)
cut_dict = {'video_path':video_path,'label_name':label_name,"stop_fps":fps1,'bbox_list':time_out_list}
# 添加到新的队列
self.cutbboxQueue.put(cut_dict)
# 对比示例列表更新
frame_result_contact = [item for item in frame_result_contact if item not in time_out_list]
if video_end:
cut_dict = {'video_path':video_path,'label_name':label_name,"stop_fps":fps1,'bbox_list':frame_result_contact}
self.cutbboxQueue.put(cut_dict)
frame_result_contact.clear()
# print('frame_result_contact:',frame_result_contact)
return count_fps_del,frame_result_contact
def analysis_return_meassage(self):
# big_add_list = []
# big_list = []
while True:
if self.videoreturnQueue.empty():
time.sleep(5)
else:
video_message_path = self.videoreturnQueue.get()
directory = os.path.dirname(video_message_path)
labels_pptsm = directory.split('/')[-1]
video_basename = os.path.basename(video_message_path).split('.')[0]
small_anno_infor = video_basename.split('__')[-1]
big_anno_infor = video_basename.split('__')[-2]
video_base_name = video_basename.split('__')[0]
#保存的json文件格式
file_path = self.video_save_file + '/' + video_base_name + '.json'
# 对小图上的坐标和帧率进行分析
small_startfps,small_stopfps,small_fps = small_anno_infor.split('_')[0].split('-')
small_bbox_0,small_bbox_1,small_bbox_2,small_bbox_3 = small_anno_infor.split('_')[1].split('-')
big_startfps,big_stopfps,big_fps = big_anno_infor.split('_')[0].split('-')
big_bbox_0,big_bbox_1,big_bbox_2,big_bbox_3 = big_anno_infor.split('_')[1].split('-')
big_add_startfps = int(big_startfps) + int(small_startfps)
big_add_stopfps = int(big_startfps) + int(small_stopfps)
big_add_bbox_0 = int(big_bbox_0) + int(small_bbox_0)
big_add_bbox_1 = int(big_bbox_1) + int(small_bbox_1)
big_add_bbox_2 = int(big_bbox_0) + int(small_bbox_2)
big_add_bbox_3 = int(big_bbox_1) + int(small_bbox_3)
big_add_dict = {'labels':labels_pptsm,'startfps':big_add_startfps,'stopfps':big_add_stopfps,'bbox':[big_add_bbox_0,big_add_bbox_1,big_add_bbox_2,big_add_bbox_3]}
big_person_dict = {'labels':'person','startfps':big_startfps,'stopfps':big_stopfps,'bbox':[big_bbox_0,big_bbox_1,big_bbox_2,big_bbox_3]}
if os.path.isfile(file_path):
# 如果文件已存在,读取其中的字典数据
with open(file_path, "r") as json_file:
data = json.load(json_file)
data['big_dict'].append(big_add_dict)
if tools_function.compare_dicts(data['big_dict'], big_person_dict):
data['big_dict'].append(big_person_dict)
with open(file_path, "w") as json_file:
json.dump(data, json_file)
# # 访问和处理字典数据
# print(data)
else:
# 如果文件不存在,创建一个新的字典并保存到文件中
bbox_dict = {'big_dict':[big_add_dict,big_person_dict]}
with open(file_path, "w") as json_file:
json.dump(bbox_dict, json_file)
def write_video(self):
# print('write_videoafagragr')
'''
保存成视频
'''
while True:
if self.cutbboxQueue.empty():
time.sleep(2)
else:
video_frame_dict = self.cutbboxQueue.get()
# 视频路径
video_path = video_frame_dict['video_path']
video_basename = os.path.basename(video_path).split('.')[0]
file_name = video_frame_dict['label_name']
# 原视频帧率和尺寸
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
video_fps = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# print(video_path,'fps:',fps,'video_fps:',video_fps)
# 获得起始
stop_fps = video_frame_dict['stop_fps']
# 裁剪信息
result_list = video_frame_dict['bbox_list']
if cap.isOpened():
for i,bbox_dict in enumerate(result_list):
start_fps = bbox_dict['fps']
if start_fps >= stop_fps:
# print('start_fps:',start_fps,'stop_fps:',stop_fps)
break
else:
bbox_list = bbox_dict['result']
bbox_int_list = [int(bbox_list[0]),int(bbox_list[1]),int(bbox_list[2]),int(bbox_list[3])]
w = bbox_int_list[2] - bbox_int_list[0]
h = bbox_int_list[3] - bbox_int_list[1]
size = [w,h]
if tools_function.determine_zero(size):
size = (w,h)
# 根据标签保存不同视频分类
# bbox_name = '{}-{}-{}_{}'.format(int(bbox_list[0]), int(bbox_list[1]), int(bbox_list[2]), int(bbox_list[3]))
video_name_save = '{}__{}-{}-{}_{}-{}-{}-{}.avi'.format(video_basename, start_fps, stop_fps, video_fps,int(bbox_list[0]), int(bbox_list[1]), int(bbox_list[2]), int(bbox_list[3]))
video_save_file = self.video_save_file + '/' + file_name
os.makedirs(video_save_file, exist_ok=True)
video_save_path = os.path.join(video_save_file, video_name_save)
videoWriter =cv2.VideoWriter(video_save_path,cv2.VideoWriter_fourcc('X','V','I','D'),fps,size)
tools_function.save_seg_video(video_name=video_path,
frameToStart=start_fps,
frametoStop=stop_fps,
videoWriter=videoWriter,
bbox=bbox_int_list,
size=size)
videoWriter.release()
self.videoQueue2.put(video_save_path)
else:
print('-----------------agrag-----------------',size,'-----------------agag-----------------')
cap.release()
else:
print(video_path)
break
def select_video_path(self):
while True:
if self.videoQueue2.empty():
time.sleep(5)
else:
video_path = self.videoQueue2.get()
directory = os.path.dirname(video_path)
labels = directory.split('/')[-1]
# print('video_pathagfg:',video_path)
# print(labels)
if labels == 'person':
self.videoQueue3.put(video_path)
# if labels == 'head' or labels == 'hands':
if labels == 'hands':
self.videodetQueue.put(video_path)
else:
pass
def run(self):
self.get_video_listThread.start()
self.get_video_frameThread.start()
self.write_videoThread.start()
self.head_hands_detThread.start()
self.video_select_dectThread.start()
self.select_video_pathThread.start()
self.analysis_return_meassageThread.start()
if __name__ == '__main__':
t1 = time.time()
video = "E:/Bank_files/Bank_02/dataset/video_kf/02.mp4"
video_save = 'test_video'
# 初始化目标检测
person_model = YOLO("model_file/yolov8x.pt")
# 初始化pptsmv2
config = 'model_file/inference/pptsm_lcnet_k400_16frames_uniform.yaml' # 配置文件地址
model_file = 'model_file/inference_hands_2/ppTSMv2.pdmodel' # 推理模型存放地址
params_file = 'model_file/inference_hands_2/ppTSMv2.pdiparams'
# batch_size= 1
infer,predictor = PP_TSMv2_predict().create_inference_model(config,model_file,params_file)
# PP_TSMv2_predict().predict(config,input_file,batch_size,predictor,infer)
# 初始化mediapipe
mp_holistic = mp.solutions.holistic
holistic = mp_holistic.Holistic(
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
# get_seg_video(video_file=video,video_save_path=video_save,dertTime=dertTime)
deal = DealVideo(video_file=video,video_save_file=video_save,person_model=person_model,mediapipe_model=holistic,pptsmv2_model=[infer,predictor])
deal.run()
t2 = time.time()
# print('总时间:',t2-t1)