You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

393 lines
10 KiB
Python

import cv2
import os
from deepdiff import DeepDiff
# 图像文件夹
def get_video_list(path):
video_ext = [".mp4", ".avi",".MP4"]
video_names = []
for maindir, subdir, file_name_list in os.walk(path):
for filename in file_name_list:
apath = os.path.join(maindir, filename)
ext = os.path.splitext(apath)[1]
if ext in video_ext:
video_names.append(apath)
return video_names
# # 截取裁剪需要的视频帧
# def save_seg_video(video_name, frameToStart, frametoStop, videoWriter, bbox):
# cap = video_name
# cap.set(cv2.CAP_PROP_POS_FRAMES, frameToStart) # 设置初始帧数
# count = frameToStart
# while True:
# success, frame = cap.read()
# if not success or count > frametoStop:
# break
# if count >= frameToStart:
# # 裁剪视频画面
# frame_target = frame[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])]
# videoWriter.write(frame_target)
# count += 1
# cap.release()
# 截取裁剪需要的视频帧
def save_seg_video(video_name,frameToStart,frametoStop,videoWriter,bbox,size):
cap = cv2.VideoCapture(video_name)
count = 0
while True:
success,frame = cap.read()
if success:
count += 1
if count <= frametoStop and count > frameToStart: # 选取起始帧
# print('correct= ', count)
#裁剪视频画面
frame_target = frame[bbox[1]:bbox[3], bbox[0]:bbox[2]] # (split_height, split_width)
try:
frame_target = cv2.resize(frame_target,size)
videoWriter.write(frame_target)
except Exception as e:
print('----------------------------------',size,'----------------------------------')
print(e)
if not success or count >= frametoStop:
break
videoWriter.release()
cap.release()
# 获得字典中所有values值这个值是列表
def get_dict_values(lst):
"""
获取列表中所有字典的 values 如果值是列表
参数:
lst: 包含字典的列表
返回值:
values: 包含所有字典的 values 值的列表如果值是列表
"""
return [value for dictionary in lst for value in dictionary.values() if isinstance(value, list)]
# 解析检测后的结果,为检测后的结果排序
def analysis_sort_list(re_list):
# print('result_dict:',result_dict)
# 获得检测列表
# re_list = result_dict['start_bbox']
# print('re_list:',re_list)
# 获得列表中所有字典的values值
# re_bbox_list = Process_tools.get_dict_values(re_list)
# 为检测出来的标注框排序
sorted_lst = sorted(re_list, key=lambda x: x[0])
return sorted_lst
#对比重叠率高的两个部分,并结合标注框,保存最大的标注框
def contrast_bbox(e_bbox,r_bbox):
e_bbox_min = e_bbox[:2]
r_bbox_min = r_bbox[:2]
bbox_min = [min(x, y) for x, y in zip(e_bbox_min, r_bbox_min)]
e_bbox_max = e_bbox[-2:]
r_bbox_max = r_bbox[-2:]
bbox_max = [max(x, y) for x, y in zip(e_bbox_max, r_bbox_max)]
bbox = bbox_min + bbox_max
return bbox
# 解析result_list列表
def analysis_re01_list(example_list,result_list):
'''
example_dict:对比的参照
result_dict: 需要与参照对比的结果
example_sorted_lst返回值中原先有现在没有部分
re_dict_sorted_lst返回值中现在有原先没有部分
cut_list原先有现在也有的部分
'''
# 第一次检测到目标的帧率和信息
# example_dict_fps = list(example_dict.keys())[0]
# example_sorted_lst = Process_tools.analysis_sort_list(example_list)
# 当前帧检测结果中所有的检测结果数值
# re_dict_fps = list(result_dict.keys())[0]
# re_dict_sorted_lst = Process_tools.analysis_sort_list(result_list)
# 保存前后帧率连续的范围、筛选出相同的部分
cut_list = []
example_temp = []
re_temp = []
for i,ex_bbox_dict in enumerate(example_list):
ex_bbox = ex_bbox_dict['result']
for j,re_bbox in enumerate(result_list):
iou = calculate_iou(box1=ex_bbox, box2=re_bbox)
# print(iou)
if iou > 0.5:
# bbox = Process_tools.contrast_bbox(e_bbox=ex_bbox,r_bbox=re_bbox)
# cut_list.append({i:re_bbox})
cut_list.append(re_bbox)
example_temp.append(ex_bbox)
re_temp.append(re_bbox)
break
# print('example_temp:',example_temp)
# print('re_temp:',re_temp)
example_sorted_lst = [item for item in example_list if item['result'] not in example_temp]
re_dict_sorted_lst = [item for item in result_list if item not in re_temp]
return cut_list,example_sorted_lst,re_dict_sorted_lst
# 计算前后帧率重叠范围
def calculate_iou(box1, box2):
"""
计算两个边界框之间的IoU值
参数:
box1: 边界框1的坐标x1, y1, x2, y2
box2: 边界框2的坐标x1, y1, x2, y2
返回值:
iou: 两个边界框之间的IoU值
"""
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
# 计算交集区域面积
intersection_area = max(0, x2 - x1 + 1) * max(0, y2 - y1 + 1)
# 计算边界框1和边界框2的面积
box1_area = (box1[2] - box1[0] + 1) * (box1[3] - box1[1] + 1)
box2_area = (box2[2] - box2[0] + 1) * (box2[3] - box2[1] + 1)
# 计算并集区域面积
union_area = box1_area + box2_area - intersection_area
# 计算IoU值
iou = intersection_area / union_area
return iou
# 修正坐标参数
def para_correction(images_size,bbox,dertpara):
'''
修正检测后标注框过小的情况,如果有修正参数则使用修正参数如果没有就按照坐标值扩大两倍
'''
# if dertpara:
# pass
# else:
w = (bbox[2] - bbox[0]) / int(dertpara)
h = (bbox[3] - bbox[1]) / int(dertpara)
bbox_extand_list_x = [bbox[0] - w,bbox[2] + w]
bbox_extand_list_y = [bbox[1] - h,bbox[3] + h]
bbox_list_x = contrast(size=images_size[0],bbox_extand_list=bbox_extand_list_x)
bbox_list_y = contrast(size=images_size[1],bbox_extand_list=bbox_extand_list_y)
bbox_list = [bbox_list_x[0],bbox_list_y[0],bbox_list_x[1],bbox_list_y[1]]
return bbox_list
def para_correction_back(x1, y1, x2, y2):
'''
修正检测后标注框还原
'''
# if dertpara:
# pass
# else:
# x1, y1, x2, y2 = bbox[0], bbox[1],bbox[2],bbox[3] # 原始坐标
width = x2 - x1
height = y2 - y1
scaled_width = int(width * 1.2)
scaled_height = int(height * 1.2)
restored_width = int(scaled_width / 1.2)
restored_height = int(scaled_height / 1.2)
restored_x1 = x1 + (width - restored_width) // 2
restored_y1 = y1 + (height - restored_height) // 2
restored_x2 = restored_x1 + restored_width
restored_y2 = restored_y1 + restored_height
bbox_list = [restored_x1,restored_y1,restored_x2,restored_y2]
return bbox_list
def para_list_correction(images_size,bbox_list,dertpara):
updata_result_list = []
for bbox in bbox_list:
updata_bbox = para_correction(images_size,bbox,dertpara)
updata_result_list.append(updata_bbox)
return updata_result_list
# 对比数值是否在这个范围内
def contrast(size,bbox_extand_list):
'''
对比数值是否在这个范围内
'''
# print('bbox_extand_list:',bbox_extand_list)
# print('size:',size)
bbox_list = []
for x in bbox_extand_list:
# print('size:',size)
if 0 <= int(x) <= int(size):
# print('in:',x,size)
bbox_list.append(x)
if int(x) > int(size):
# print('>:',x,size)
bbox_list.append(size)
if int(x) < 0:
# print('<:',x,size)
bbox_list.append(0)
# print('bbox_list:',bbox_list)
return bbox_list
def change_list_dict(fps1,re_list):
'''
给列表的结果设置对应帧率
'''
bbox_list_all = []
for bbox_list in re_list:
bbox_dict = {'fps':fps1,'result':bbox_list}
bbox_list_all.append(bbox_dict)
return bbox_list_all
def statistics_fps(fps_now,re_list,parameter):
'''
统计时长返回时间满足截取要求的目标坐标
'''
time_out_list = []
for bbox_dict in re_list:
con_fps = int(fps_now) - int(bbox_dict["fps"])
if con_fps > parameter:
time_out_list.append(bbox_dict)
return time_out_list
def change_dict_list(dict_list):
'''
从字典列表得到bbox列表
'''
bbox_list = []
for dicts1 in dict_list:
bbox_list.append(dicts1['result'])
return bbox_list
def select_list(result_list):
'''
筛选列表中的空列表
'''
if result_list:
result_only = []
for result in result_list:
if result == None :
pass
else:
# result_bbox = select_bbox(result)
result_only.append(result)
return result_only
def select_bbox(bbox_list):
# bbox_list_return = []
# print('bbox:',bbox_list)
left_top = [min(bbox_list, key=lambda p: p[0])[0], min(bbox_list, key=lambda p: p[1])[1]]
right_bottom = [max(bbox_list, key=lambda p: p[0])[0], max(bbox_list, key=lambda p: p[1])[1]]
bbox_list_return = left_top + right_bottom
# print('bbox_list:',bbox_list_return)
return bbox_list_return
# 对比两字典中的值是否完全一致
def compare_dicts(dict1, list_of_dicts):
for d in list_of_dicts:
diff = DeepDiff(dict1, d)
if not diff:
return False
return True