You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.4 KiB
Python
97 lines
3.4 KiB
Python
2 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
import csv
|
||
|
import paddle.nn.functional as F
|
||
|
|
||
|
from .registry import METRIC
|
||
|
from .base import BaseMetric
|
||
|
from paddlevideo.utils import get_logger
|
||
|
|
||
|
logger = get_logger("paddlevideo")
|
||
|
|
||
|
|
||
|
@METRIC.register
|
||
|
class SkeletonMetric(BaseMetric):
|
||
|
"""
|
||
|
Test for Skeleton based model.
|
||
|
note: only support batch size = 1, single card test.
|
||
|
|
||
|
Args:
|
||
|
out_file: str, file to save test results.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
data_size,
|
||
|
batch_size,
|
||
|
out_file='submission.csv',
|
||
|
log_interval=1,
|
||
|
top_k=5):
|
||
|
"""prepare for metrics
|
||
|
"""
|
||
|
super().__init__(data_size, batch_size, log_interval)
|
||
|
self.top1 = []
|
||
|
self.top5 = []
|
||
|
self.values = []
|
||
|
self.out_file = out_file
|
||
|
self.k = top_k
|
||
|
|
||
|
def update(self, batch_id, data, outputs):
|
||
|
"""update metrics during each iter
|
||
|
"""
|
||
|
if data[0].shape[0] != outputs.shape[0]:
|
||
|
num_segs = data[0].shape[1]
|
||
|
batch_size = outputs.shape[0]
|
||
|
outputs = outputs.reshape(
|
||
|
[batch_size // num_segs, num_segs, outputs.shape[-1]])
|
||
|
outputs = outputs.mean(axis=1)
|
||
|
if len(data) == 2: # data with label
|
||
|
labels = data[1]
|
||
|
top1 = paddle.metric.accuracy(input=outputs, label=labels, k=1)
|
||
|
top5 = paddle.metric.accuracy(input=outputs, label=labels, k=self.k)
|
||
|
if self.world_size > 1:
|
||
|
top1 = paddle.distributed.all_reduce(
|
||
|
top1, op=paddle.distributed.ReduceOp.SUM) / self.world_size
|
||
|
top5 = paddle.distributed.all_reduce(
|
||
|
top5, op=paddle.distributed.ReduceOp.SUM) / self.world_size
|
||
|
self.top1.append(top1.numpy())
|
||
|
self.top5.append(top5.numpy())
|
||
|
else: # data without label, only support batch_size=1. Used for fsd-10.
|
||
|
prob = F.softmax(outputs)
|
||
|
clas = paddle.argmax(prob, axis=1).numpy()[0]
|
||
|
self.values.append((batch_id, clas))
|
||
|
|
||
|
# preds ensemble
|
||
|
if batch_id % self.log_interval == 0:
|
||
|
logger.info("[TEST] Processing batch {}/{} ...".format(
|
||
|
batch_id,
|
||
|
self.data_size // (self.batch_size * self.world_size)))
|
||
|
|
||
|
def accumulate(self):
|
||
|
"""accumulate metrics when finished all iters.
|
||
|
"""
|
||
|
if self.top1: # data with label
|
||
|
logger.info('[TEST] finished, avg_acc1= {}, avg_acc5= {}'.format(
|
||
|
np.mean(np.array(self.top1)), np.mean(np.array(self.top5))))
|
||
|
else:
|
||
|
headers = ['sample_index', 'predict_category']
|
||
|
with open(
|
||
|
self.out_file,
|
||
|
'w',
|
||
|
) as fp:
|
||
|
writer = csv.writer(fp)
|
||
|
writer.writerow(headers)
|
||
|
writer.writerows(self.values)
|
||
|
logger.info("Results saved in {} !".format(self.out_file))
|