You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
93 lines
3.1 KiB
Python
93 lines
3.1 KiB
Python
2 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
from collections import OrderedDict
|
||
|
from paddlevideo.utils import get_logger, load, log_batch, AverageMeter
|
||
|
from .registry import METRIC
|
||
|
from .base import BaseMetric
|
||
|
import time
|
||
|
from datetime import datetime
|
||
|
from .ava_utils import ava_evaluate_results
|
||
|
|
||
|
logger = get_logger("paddlevideo")
|
||
|
""" An example for metrics class.
|
||
|
MultiCropMetric for slowfast.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@METRIC.register
|
||
|
class AVAMetric(BaseMetric):
|
||
|
def __init__(self,
|
||
|
data_size,
|
||
|
batch_size,
|
||
|
file_path,
|
||
|
exclude_file,
|
||
|
label_file,
|
||
|
custom_classes,
|
||
|
log_interval=1):
|
||
|
"""prepare for metrics
|
||
|
"""
|
||
|
super().__init__(data_size, batch_size, log_interval)
|
||
|
|
||
|
self.file_path = file_path
|
||
|
self.exclude_file = exclude_file
|
||
|
self.label_file = label_file
|
||
|
self.custom_classes = custom_classes
|
||
|
|
||
|
self.results = []
|
||
|
|
||
|
record_list = [
|
||
|
("loss", AverageMeter('loss', '7.5f')),
|
||
|
("recall@thr=0.5", AverageMeter("recall@thr=0.5", '.5f')),
|
||
|
("prec@thr=0.5", AverageMeter("prec@thr=0.5", '.5f')),
|
||
|
("recall@top3", AverageMeter("recall@top3", '.5f')),
|
||
|
("prec@top3", AverageMeter("prec@top3", '.5f')),
|
||
|
("recall@top5", AverageMeter("recall@top5", '.5f')),
|
||
|
("prec@top5", AverageMeter("prec@top5", '.5f')),
|
||
|
("mAP@0.5IOU", AverageMeter("mAP@0.5IOU", '.5f')),
|
||
|
("batch_time", AverageMeter('batch_cost', '.5f')),
|
||
|
("reader_time", AverageMeter('reader_cost', '.5f')),
|
||
|
]
|
||
|
|
||
|
self.record_list = OrderedDict(record_list)
|
||
|
|
||
|
self.tic = time.time()
|
||
|
|
||
|
def update(self, batch_id, data, outputs):
|
||
|
"""update metrics during each iter
|
||
|
"""
|
||
|
|
||
|
self.results.extend(outputs)
|
||
|
self.record_list['batch_time'].update(time.time() - self.tic)
|
||
|
tic = time.time()
|
||
|
ips = "ips: {:.5f} instance/sec.".format(
|
||
|
self.batch_size / self.record_list["batch_time"].val)
|
||
|
log_batch(self.record_list, batch_id, 0, 0, "test", ips)
|
||
|
|
||
|
def set_dataset_info(self, info, dataset_len):
|
||
|
self.info = info
|
||
|
self.dataset_len = dataset_len
|
||
|
|
||
|
def accumulate(self):
|
||
|
"""accumulate metrics when finished all iters.
|
||
|
"""
|
||
|
test_res = ava_evaluate_results(self.info, self.dataset_len,
|
||
|
self.results, None, self.label_file,
|
||
|
self.file_path, self.exclude_file)
|
||
|
|
||
|
for name, value in test_res.items():
|
||
|
self.record_list[name].update(value, self.batch_size)
|
||
|
|
||
|
return self.record_list
|