You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1223 lines
38 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TENSORRT_COMMON_H
#define TENSORRT_COMMON_H
// For loadLibrary
#ifdef _MSC_VER
// Needed so that the max/min definitions in windows.h do not conflict with std::max/min.
#define NOMINMAX
#include <windows.h>
#undef NOMINMAX
#else
#include <dlfcn.h>
#endif
#include "NvInfer.h"
#include "NvInferPlugin.h"
#include "logger.h"
#include "sampleEntrypoints.h"
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstring>
#include <cuda_runtime_api.h>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ratio>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#ifdef _MSC_VER
#else
#include <stdio.h> // fileno
#include <unistd.h> // lockf
#endif
#include "safeCommon.h"
#ifdef _MSC_VER
#define FN_NAME __FUNCTION__
#else
#define FN_NAME __func__
#endif
#if defined(__aarch64__) || defined(__QNX__)
#define ENABLE_DLA_API 1
#endif
#define CHECK_RETURN_W_MSG(status, val, errMsg) \
do \
{ \
if (!(status)) \
{ \
sample::gLogError << errMsg << " Error in " << __FILE__ << ", function " << FN_NAME << "(), line " << __LINE__ \
<< std::endl; \
return val; \
} \
} while (0)
#undef ASSERT
#define ASSERT(condition) \
do \
{ \
if (!(condition)) \
{ \
sample::gLogError << "Assertion failure: " << #condition << std::endl; \
abort(); \
} \
} while (0)
#define CHECK_RETURN(status, val) CHECK_RETURN_W_MSG(status, val, "")
#define OBJ_GUARD(A) std::unique_ptr<A, void (*)(A * t)>
template <typename T, typename T_>
OBJ_GUARD(T)
makeObjGuard(T_* t)
{
CHECK(!(std::is_base_of<T, T_>::value || std::is_same<T, T_>::value));
auto deleter = [](T* t) { t->destroy(); };
return std::unique_ptr<T, decltype(deleter)>{static_cast<T*>(t), deleter};
}
constexpr long double operator"" _GiB(long double val)
{
return val * (1 << 30);
}
constexpr long double operator"" _MiB(long double val)
{
return val * (1 << 20);
}
constexpr long double operator"" _KiB(long double val)
{
return val * (1 << 10);
}
struct SimpleProfiler : public nvinfer1::IProfiler
{
struct Record
{
float time{0};
int count{0};
};
void reportLayerTime(const char* layerName, float ms) noexcept override
{
mProfile[layerName].count++;
mProfile[layerName].time += ms;
if (std::find(mLayerNames.begin(), mLayerNames.end(), layerName) == mLayerNames.end())
{
mLayerNames.push_back(layerName);
}
}
SimpleProfiler(const char* name, const std::vector<SimpleProfiler>& srcProfilers = std::vector<SimpleProfiler>())
: mName(name)
{
for (const auto& srcProfiler : srcProfilers)
{
for (const auto& rec : srcProfiler.mProfile)
{
auto it = mProfile.find(rec.first);
if (it == mProfile.end())
{
mProfile.insert(rec);
}
else
{
it->second.time += rec.second.time;
it->second.count += rec.second.count;
}
}
}
}
friend std::ostream& operator<<(std::ostream& out, const SimpleProfiler& value)
{
out << "========== " << value.mName << " profile ==========" << std::endl;
float totalTime = 0;
std::string layerNameStr = "TensorRT layer name";
int maxLayerNameLength = std::max(static_cast<int>(layerNameStr.size()), 70);
for (const auto& elem : value.mProfile)
{
totalTime += elem.second.time;
maxLayerNameLength = std::max(maxLayerNameLength, static_cast<int>(elem.first.size()));
}
auto old_settings = out.flags();
auto old_precision = out.precision();
// Output header
{
out << std::setfill(' ') << std::setw(maxLayerNameLength) << layerNameStr << " ";
out << std::setw(12) << "Runtime, "
<< "%"
<< " ";
out << std::setw(12) << "Invocations"
<< " ";
out << std::setw(12) << "Runtime, ms" << std::endl;
}
for (size_t i = 0; i < value.mLayerNames.size(); i++)
{
const std::string layerName = value.mLayerNames[i];
auto elem = value.mProfile.at(layerName);
out << std::setw(maxLayerNameLength) << layerName << " ";
out << std::setw(12) << std::fixed << std::setprecision(1) << (elem.time * 100.0F / totalTime) << "%"
<< " ";
out << std::setw(12) << elem.count << " ";
out << std::setw(12) << std::fixed << std::setprecision(2) << elem.time << std::endl;
}
out.flags(old_settings);
out.precision(old_precision);
out << "========== " << value.mName << " total runtime = " << totalTime << " ms ==========" << std::endl;
return out;
}
private:
std::string mName;
std::vector<std::string> mLayerNames;
std::map<std::string, Record> mProfile;
};
//! Locate path to file, given its filename or filepath suffix and possible dirs it might lie in.
//! Function will also walk back MAX_DEPTH dirs from CWD to check for such a file path.
inline std::string locateFile(
const std::string& filepathSuffix, const std::vector<std::string>& directories, bool reportError = true)
{
const int MAX_DEPTH{10};
bool found{false};
std::string filepath;
for (auto& dir : directories)
{
if (!dir.empty() && dir.back() != '/')
{
#ifdef _MSC_VER
filepath = dir + "\\" + filepathSuffix;
#else
filepath = dir + "/" + filepathSuffix;
#endif
}
else
{
filepath = dir + filepathSuffix;
}
for (int i = 0; i < MAX_DEPTH && !found; i++)
{
const std::ifstream checkFile(filepath);
found = checkFile.is_open();
if (found)
{
break;
}
filepath = "../" + filepath; // Try again in parent dir
}
if (found)
{
break;
}
filepath.clear();
}
// Could not find the file
if (filepath.empty())
{
const std::string dirList = std::accumulate(directories.begin() + 1, directories.end(), directories.front(),
[](const std::string& a, const std::string& b) { return a + "\n\t" + b; });
std::cout << "Could not find " << filepathSuffix << " in data directories:\n\t" << dirList << std::endl;
if (reportError)
{
std::cout << "&&&& FAILED" << std::endl;
exit(EXIT_FAILURE);
}
}
return filepath;
}
inline void readPGMFile(const std::string& fileName, uint8_t* buffer, int inH, int inW)
{
std::ifstream infile(fileName, std::ifstream::binary);
assert(infile.is_open() && "Attempting to read from a file that is not open.");
std::string magic, h, w, max;
infile >> magic >> h >> w >> max;
infile.seekg(1, infile.cur);
infile.read(reinterpret_cast<char*>(buffer), inH * inW);
}
namespace samplesCommon
{
// Swaps endianness of an integral type.
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
inline T swapEndianness(const T& value)
{
uint8_t bytes[sizeof(T)];
for (int i = 0; i < static_cast<int>(sizeof(T)); ++i)
{
bytes[sizeof(T) - 1 - i] = *(reinterpret_cast<const uint8_t*>(&value) + i);
}
return *reinterpret_cast<T*>(bytes);
}
class HostMemory
{
public:
HostMemory() = delete;
virtual void* data() const noexcept
{
return mData;
}
virtual std::size_t size() const noexcept
{
return mSize;
}
virtual nvinfer1::DataType type() const noexcept
{
return mType;
}
virtual ~HostMemory() {}
protected:
HostMemory(std::size_t size, nvinfer1::DataType type)
: mData{nullptr}
, mSize(size)
, mType(type)
{
}
void* mData;
std::size_t mSize;
nvinfer1::DataType mType;
};
template <typename ElemType, nvinfer1::DataType dataType>
class TypedHostMemory : public HostMemory
{
public:
explicit TypedHostMemory(std::size_t size)
: HostMemory(size, dataType)
{
mData = new ElemType[size];
};
~TypedHostMemory() noexcept override
{
delete[](ElemType*) mData;
}
ElemType* raw() noexcept
{
return static_cast<ElemType*>(data());
}
};
using FloatMemory = TypedHostMemory<float, nvinfer1::DataType::kFLOAT>;
using HalfMemory = TypedHostMemory<uint16_t, nvinfer1::DataType::kHALF>;
using ByteMemory = TypedHostMemory<uint8_t, nvinfer1::DataType::kINT8>;
inline void* safeCudaMalloc(size_t memSize)
{
void* deviceMem;
CHECK(cudaMalloc(&deviceMem, memSize));
if (deviceMem == nullptr)
{
std::cerr << "Out of memory" << std::endl;
exit(1);
}
return deviceMem;
}
inline bool isDebug()
{
return (std::getenv("TENSORRT_DEBUG") ? true : false);
}
struct InferDeleter
{
template <typename T>
void operator()(T* obj) const
{
delete obj;
}
};
template <typename T>
using SampleUniquePtr = std::unique_ptr<T, InferDeleter>;
static auto StreamDeleter = [](cudaStream_t* pStream)
{
if (pStream)
{
cudaStreamDestroy(*pStream);
delete pStream;
}
};
inline std::unique_ptr<cudaStream_t, decltype(StreamDeleter)> makeCudaStream()
{
std::unique_ptr<cudaStream_t, decltype(StreamDeleter)> pStream(new cudaStream_t, StreamDeleter);
if (cudaStreamCreateWithFlags(pStream.get(), cudaStreamNonBlocking) != cudaSuccess)
{
pStream.reset(nullptr);
}
return pStream;
}
//! Return vector of indices that puts magnitudes of sequence in descending order.
template <class Iter>
std::vector<size_t> argMagnitudeSort(Iter begin, Iter end)
{
std::vector<size_t> indices(end - begin);
std::iota(indices.begin(), indices.end(), 0);
std::sort(indices.begin(), indices.end(), [&begin](size_t i, size_t j) { return std::abs(begin[j]) < std::abs(begin[i]); });
return indices;
}
inline bool readReferenceFile(const std::string& fileName, std::vector<std::string>& refVector)
{
std::ifstream infile(fileName);
if (!infile.is_open())
{
std::cout << "ERROR: readReferenceFile: Attempting to read from a file that is not open." << std::endl;
return false;
}
std::string line;
while (std::getline(infile, line))
{
if (line.empty())
continue;
refVector.push_back(line);
}
infile.close();
return true;
}
template <typename T>
std::vector<std::string> classify(
const std::vector<std::string>& refVector, const std::vector<T>& output, const size_t topK)
{
const auto inds = samplesCommon::argMagnitudeSort(output.cbegin(), output.cend());
std::vector<std::string> result;
result.reserve(topK);
for (size_t k = 0; k < topK; ++k)
{
result.push_back(refVector[inds[k]]);
}
return result;
}
// Returns indices of highest K magnitudes in v.
template <typename T>
std::vector<size_t> topKMagnitudes(const std::vector<T>& v, const size_t k)
{
std::vector<size_t> indices = samplesCommon::argMagnitudeSort(v.cbegin(), v.cend());
indices.resize(k);
return indices;
}
template <typename T>
bool readASCIIFile(const std::string& fileName, const size_t size, std::vector<T>& out)
{
std::ifstream infile(fileName);
if (!infile.is_open())
{
std::cout << "ERROR readASCIIFile: Attempting to read from a file that is not open." << std::endl;
return false;
}
out.clear();
out.reserve(size);
out.assign(std::istream_iterator<T>(infile), std::istream_iterator<T>());
infile.close();
return true;
}
template <typename T>
bool writeASCIIFile(const std::string& fileName, const std::vector<T>& in)
{
std::ofstream outfile(fileName);
if (!outfile.is_open())
{
std::cout << "ERROR: writeASCIIFile: Attempting to write to a file that is not open." << std::endl;
return false;
}
for (auto fn : in)
{
outfile << fn << "\n";
}
outfile.close();
return true;
}
inline void print_version()
{
std::cout << " TensorRT version: " << NV_TENSORRT_MAJOR << "." << NV_TENSORRT_MINOR << "." << NV_TENSORRT_PATCH
<< "." << NV_TENSORRT_BUILD << std::endl;
}
inline std::string getFileType(const std::string& filepath)
{
return filepath.substr(filepath.find_last_of(".") + 1);
}
inline std::string toLower(const std::string& inp)
{
std::string out = inp;
std::transform(out.begin(), out.end(), out.begin(), ::tolower);
return out;
}
inline float getMaxValue(const float* buffer, int64_t size)
{
assert(buffer != nullptr);
assert(size > 0);
return *std::max_element(buffer, buffer + size);
}
inline int32_t calculateSoftmax(float* const prob, int32_t const numDigits)
{
ASSERT(prob != nullptr);
ASSERT(numDigits == 10);
float sum{0.0F};
std::transform(prob, prob + numDigits, prob, [&sum](float v) -> float {
sum += exp(v);
return exp(v);
});
ASSERT(sum != 0.0F);
std::transform(prob, prob + numDigits, prob, [sum](float v) -> float { return v / sum; });
int32_t idx = std::max_element(prob, prob + numDigits) - prob;
return idx;
}
// Ensures that every tensor used by a network has a dynamic range set.
//
// All tensors in a network must have a dynamic range specified if a calibrator is not used.
// This function is just a utility to globally fill in missing scales and zero-points for the entire network.
//
// If a tensor does not have a dyanamic range set, it is assigned inRange or outRange as follows:
//
// * If the tensor is the input to a layer or output of a pooling node, its dynamic range is derived from inRange.
// * Otherwise its dynamic range is derived from outRange.
//
// The default parameter values are intended to demonstrate, for final layers in the network,
// cases where dynamic ranges are asymmetric.
//
// The default parameter values choosen arbitrarily. Range values should be choosen such that
// we avoid underflow or overflow. Also range value should be non zero to avoid uniform zero scale tensor.
inline void setAllDynamicRanges(nvinfer1::INetworkDefinition* network, float inRange = 2.0f, float outRange = 4.0f)
{
// Ensure that all layer inputs have a scale.
for (int i = 0; i < network->getNbLayers(); i++)
{
auto layer = network->getLayer(i);
for (int j = 0; j < layer->getNbInputs(); j++)
{
nvinfer1::ITensor* input{layer->getInput(j)};
// Optional inputs are nullptr here and are from RNN layers.
if (input != nullptr && !input->dynamicRangeIsSet())
{
ASSERT(input->setDynamicRange(-inRange, inRange));
}
}
}
// Ensure that all layer outputs have a scale.
// Tensors that are also inputs to layers are ingored here
// since the previous loop nest assigned scales to them.
for (int i = 0; i < network->getNbLayers(); i++)
{
auto layer = network->getLayer(i);
for (int j = 0; j < layer->getNbOutputs(); j++)
{
nvinfer1::ITensor* output{layer->getOutput(j)};
// Optional outputs are nullptr here and are from RNN layers.
if (output != nullptr && !output->dynamicRangeIsSet())
{
// Pooling must have the same input and output scales.
if (layer->getType() == nvinfer1::LayerType::kPOOLING)
{
ASSERT(output->setDynamicRange(-inRange, inRange));
}
else
{
ASSERT(output->setDynamicRange(-outRange, outRange));
}
}
}
}
}
inline void setDummyInt8DynamicRanges(const nvinfer1::IBuilderConfig* c, nvinfer1::INetworkDefinition* n)
{
// Set dummy per-tensor dynamic range if Int8 mode is requested.
if (c->getFlag(nvinfer1::BuilderFlag::kINT8))
{
sample::gLogWarning << "Int8 calibrator not provided. Generating dummy per-tensor dynamic range. Int8 accuracy "
"is not guaranteed."
<< std::endl;
setAllDynamicRanges(n);
}
}
inline void enableDLA(
nvinfer1::IBuilder* builder, nvinfer1::IBuilderConfig* config, int useDLACore, bool allowGPUFallback = true)
{
if (useDLACore >= 0)
{
if (builder->getNbDLACores() == 0)
{
std::cerr << "Trying to use DLA core " << useDLACore << " on a platform that doesn't have any DLA cores"
<< std::endl;
assert("Error: use DLA core on a platfrom that doesn't have any DLA cores" && false);
}
if (allowGPUFallback)
{
config->setFlag(nvinfer1::BuilderFlag::kGPU_FALLBACK);
}
if (!config->getFlag(nvinfer1::BuilderFlag::kINT8))
{
// User has not requested INT8 Mode.
// By default run in FP16 mode. FP32 mode is not permitted.
config->setFlag(nvinfer1::BuilderFlag::kFP16);
}
config->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
config->setDLACore(useDLACore);
}
}
inline int32_t parseDLA(int32_t argc, char** argv)
{
for (int32_t i = 1; i < argc; i++)
{
if (strncmp(argv[i], "--useDLACore=", 13) == 0)
{
return std::stoi(argv[i] + 13);
}
}
return -1;
}
inline uint32_t getElementSize(nvinfer1::DataType t) noexcept
{
switch (t)
{
case nvinfer1::DataType::kINT32: return 4;
case nvinfer1::DataType::kFLOAT: return 4;
case nvinfer1::DataType::kHALF: return 2;
case nvinfer1::DataType::kBOOL:
case nvinfer1::DataType::kUINT8:
case nvinfer1::DataType::kINT8:
case nvinfer1::DataType::kFP8: return 1;
}
return 0;
}
inline int64_t volume(nvinfer1::Dims const& dims, int32_t start, int32_t stop)
{
ASSERT(start >= 0);
ASSERT(start <= stop);
ASSERT(stop <= dims.nbDims);
ASSERT(std::all_of(dims.d + start, dims.d + stop, [](int32_t x) { return x >= 0; }));
return std::accumulate(dims.d + start, dims.d + stop, int64_t{1}, std::multiplies<int64_t>{});
}
template <int C, int H, int W>
struct PPM
{
std::string magic, fileName;
int h, w, max;
uint8_t buffer[C * H * W];
};
// New vPPM(variable sized PPM) class with variable dimensions.
struct vPPM
{
std::string magic, fileName;
int h, w, max;
std::vector<uint8_t> buffer;
};
struct BBox
{
float x1, y1, x2, y2;
};
template <int C, int H, int W>
void readPPMFile(const std::string& filename, samplesCommon::PPM<C, H, W>& ppm)
{
ppm.fileName = filename;
std::ifstream infile(filename, std::ifstream::binary);
assert(infile.is_open() && "Attempting to read from a file that is not open.");
infile >> ppm.magic >> ppm.w >> ppm.h >> ppm.max;
infile.seekg(1, infile.cur);
infile.read(reinterpret_cast<char*>(ppm.buffer), ppm.w * ppm.h * 3);
}
inline void readPPMFile(const std::string& filename, vPPM& ppm, std::vector<std::string>& input_dir)
{
ppm.fileName = filename;
std::ifstream infile(locateFile(filename, input_dir), std::ifstream::binary);
infile >> ppm.magic >> ppm.w >> ppm.h >> ppm.max;
infile.seekg(1, infile.cur);
for (int i = 0; i < ppm.w * ppm.h * 3; ++i)
{
ppm.buffer.push_back(0);
}
infile.read(reinterpret_cast<char*>(&ppm.buffer[0]), ppm.w * ppm.h * 3);
}
template <int C, int H, int W>
void writePPMFileWithBBox(const std::string& filename, PPM<C, H, W>& ppm, const BBox& bbox)
{
std::ofstream outfile("./" + filename, std::ofstream::binary);
assert(!outfile.fail());
outfile << "P6"
<< "\n"
<< ppm.w << " " << ppm.h << "\n"
<< ppm.max << "\n";
auto round = [](float x) -> int { return int(std::floor(x + 0.5f)); };
const int x1 = std::min(std::max(0, round(int(bbox.x1))), W - 1);
const int x2 = std::min(std::max(0, round(int(bbox.x2))), W - 1);
const int y1 = std::min(std::max(0, round(int(bbox.y1))), H - 1);
const int y2 = std::min(std::max(0, round(int(bbox.y2))), H - 1);
for (int x = x1; x <= x2; ++x)
{
// bbox top border
ppm.buffer[(y1 * ppm.w + x) * 3] = 255;
ppm.buffer[(y1 * ppm.w + x) * 3 + 1] = 0;
ppm.buffer[(y1 * ppm.w + x) * 3 + 2] = 0;
// bbox bottom border
ppm.buffer[(y2 * ppm.w + x) * 3] = 255;
ppm.buffer[(y2 * ppm.w + x) * 3 + 1] = 0;
ppm.buffer[(y2 * ppm.w + x) * 3 + 2] = 0;
}
for (int y = y1; y <= y2; ++y)
{
// bbox left border
ppm.buffer[(y * ppm.w + x1) * 3] = 255;
ppm.buffer[(y * ppm.w + x1) * 3 + 1] = 0;
ppm.buffer[(y * ppm.w + x1) * 3 + 2] = 0;
// bbox right border
ppm.buffer[(y * ppm.w + x2) * 3] = 255;
ppm.buffer[(y * ppm.w + x2) * 3 + 1] = 0;
ppm.buffer[(y * ppm.w + x2) * 3 + 2] = 0;
}
outfile.write(reinterpret_cast<char*>(ppm.buffer), ppm.w * ppm.h * 3);
}
inline void writePPMFileWithBBox(const std::string& filename, vPPM ppm, std::vector<BBox>& dets)
{
std::ofstream outfile("./" + filename, std::ofstream::binary);
assert(!outfile.fail());
outfile << "P6"
<< "\n"
<< ppm.w << " " << ppm.h << "\n"
<< ppm.max << "\n";
auto round = [](float x) -> int { return int(std::floor(x + 0.5f)); };
for (auto bbox : dets)
{
for (int x = int(bbox.x1); x < int(bbox.x2); ++x)
{
// bbox top border
ppm.buffer[(round(bbox.y1) * ppm.w + x) * 3] = 255;
ppm.buffer[(round(bbox.y1) * ppm.w + x) * 3 + 1] = 0;
ppm.buffer[(round(bbox.y1) * ppm.w + x) * 3 + 2] = 0;
// bbox bottom border
ppm.buffer[(round(bbox.y2) * ppm.w + x) * 3] = 255;
ppm.buffer[(round(bbox.y2) * ppm.w + x) * 3 + 1] = 0;
ppm.buffer[(round(bbox.y2) * ppm.w + x) * 3 + 2] = 0;
}
for (int y = int(bbox.y1); y < int(bbox.y2); ++y)
{
// bbox left border
ppm.buffer[(y * ppm.w + round(bbox.x1)) * 3] = 255;
ppm.buffer[(y * ppm.w + round(bbox.x1)) * 3 + 1] = 0;
ppm.buffer[(y * ppm.w + round(bbox.x1)) * 3 + 2] = 0;
// bbox right border
ppm.buffer[(y * ppm.w + round(bbox.x2)) * 3] = 255;
ppm.buffer[(y * ppm.w + round(bbox.x2)) * 3 + 1] = 0;
ppm.buffer[(y * ppm.w + round(bbox.x2)) * 3 + 2] = 0;
}
}
outfile.write(reinterpret_cast<char*>(&ppm.buffer[0]), ppm.w * ppm.h * 3);
}
class TimerBase
{
public:
virtual void start() {}
virtual void stop() {}
float microseconds() const noexcept
{
return mMs * 1000.f;
}
float milliseconds() const noexcept
{
return mMs;
}
float seconds() const noexcept
{
return mMs / 1000.f;
}
void reset() noexcept
{
mMs = 0.f;
}
protected:
float mMs{0.0f};
};
class GpuTimer : public TimerBase
{
public:
explicit GpuTimer(cudaStream_t stream)
: mStream(stream)
{
CHECK(cudaEventCreate(&mStart));
CHECK(cudaEventCreate(&mStop));
}
~GpuTimer()
{
CHECK(cudaEventDestroy(mStart));
CHECK(cudaEventDestroy(mStop));
}
void start() override
{
CHECK(cudaEventRecord(mStart, mStream));
}
void stop() override
{
CHECK(cudaEventRecord(mStop, mStream));
float ms{0.0f};
CHECK(cudaEventSynchronize(mStop));
CHECK(cudaEventElapsedTime(&ms, mStart, mStop));
mMs += ms;
}
private:
cudaEvent_t mStart, mStop;
cudaStream_t mStream;
}; // class GpuTimer
template <typename Clock>
class CpuTimer : public TimerBase
{
public:
using clock_type = Clock;
void start() override
{
mStart = Clock::now();
}
void stop() override
{
mStop = Clock::now();
mMs += std::chrono::duration<float, std::milli>{mStop - mStart}.count();
}
private:
std::chrono::time_point<Clock> mStart, mStop;
}; // class CpuTimer
using PreciseCpuTimer = CpuTimer<std::chrono::high_resolution_clock>;
inline std::vector<std::string> splitString(std::string str, char delimiter = ',')
{
std::vector<std::string> splitVect;
std::stringstream ss(str);
std::string substr;
while (ss.good())
{
getline(ss, substr, delimiter);
splitVect.emplace_back(std::move(substr));
}
return splitVect;
}
inline int getC(nvinfer1::Dims const& d)
{
return d.nbDims >= 3 ? d.d[d.nbDims - 3] : 1;
}
inline int getH(const nvinfer1::Dims& d)
{
return d.nbDims >= 2 ? d.d[d.nbDims - 2] : 1;
}
inline int getW(const nvinfer1::Dims& d)
{
return d.nbDims >= 1 ? d.d[d.nbDims - 1] : 1;
}
//! Platform-agnostic wrapper around dynamic libraries.
class DynamicLibrary
{
public:
explicit DynamicLibrary(std::string const& name)
: mLibName{name}
{
#if defined(_WIN32)
mHandle = LoadLibrary(name.c_str());
#else // defined(_WIN32)
int32_t flags{RTLD_LAZY};
#if ENABLE_ASAN
// https://github.com/google/sanitizers/issues/89
// asan doesn't handle module unloading correctly and there are no plans on doing
// so. In order to get proper stack traces, don't delete the shared library on
// close so that asan can resolve the symbols correctly.
flags |= RTLD_NODELETE;
#endif // ENABLE_ASAN
mHandle = dlopen(name.c_str(), flags);
#endif // defined(_WIN32)
if (mHandle == nullptr)
{
std::string errorStr{};
#if !defined(_WIN32)
errorStr = std::string{" due to "} + std::string{dlerror()};
#endif
throw std::runtime_error("Unable to open library: " + name + errorStr);
}
}
DynamicLibrary(DynamicLibrary const&) = delete;
DynamicLibrary(DynamicLibrary const&&) = delete;
//!
//! Retrieve a function symbol from the loaded library.
//!
//! \return the loaded symbol on success
//! \throw std::invalid_argument if loading the symbol failed.
//!
template <typename Signature>
std::function<Signature> symbolAddress(char const* name)
{
if (mHandle == nullptr)
{
throw std::runtime_error("Handle to library is nullptr.");
}
void* ret;
#if defined(_MSC_VER)
ret = static_cast<void*>(GetProcAddress(static_cast<HMODULE>(mHandle), name));
#else
ret = dlsym(mHandle, name);
#endif
if (ret == nullptr)
{
std::string const kERROR_MSG(mLibName + ": error loading symbol: " + std::string(name));
throw std::invalid_argument(kERROR_MSG);
}
return reinterpret_cast<Signature*>(ret);
}
~DynamicLibrary()
{
try
{
#if defined(_WIN32)
ASSERT(static_cast<bool>(FreeLibrary(static_cast<HMODULE>(mHandle))));
#else
ASSERT(dlclose(mHandle) == 0);
#endif
}
catch (...)
{
sample::gLogError << "Unable to close library: " << mLibName << std::endl;
}
}
private:
std::string mLibName{}; //!< Name of the DynamicLibrary
void* mHandle{}; //!< Handle to the DynamicLibrary
};
inline std::unique_ptr<DynamicLibrary> loadLibrary(std::string const& path)
{
// make_unique not available until C++14 - we still need to support C++11 builds.
return std::unique_ptr<DynamicLibrary>(new DynamicLibrary{path});
}
inline int32_t getSMVersion()
{
int32_t deviceIndex = 0;
CHECK(cudaGetDevice(&deviceIndex));
int32_t major, minor;
CHECK(cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, deviceIndex));
CHECK(cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, deviceIndex));
return ((major << 8) | minor);
}
inline bool isSMSafe()
{
const int32_t smVersion = getSMVersion();
return smVersion == 0x0700 || smVersion == 0x0702 || smVersion == 0x0705 || smVersion == 0x0800
|| smVersion == 0x0806 || smVersion == 0x0807;
}
inline int32_t getMaxPersistentCacheSize()
{
int32_t deviceIndex{};
CHECK(cudaGetDevice(&deviceIndex));
int32_t maxPersistentL2CacheSize;
#if CUDART_VERSION >= 11030
CHECK(cudaDeviceGetAttribute(&maxPersistentL2CacheSize, cudaDevAttrMaxPersistingL2CacheSize, deviceIndex));
#else
maxPersistentL2CacheSize = 0;
#endif
return maxPersistentL2CacheSize;
}
inline bool isDataTypeSupported(nvinfer1::DataType dataType)
{
auto builder = SampleUniquePtr<nvinfer1::IBuilder>(createBuilder());
if (!builder)
{
return false;
}
if ((dataType == nvinfer1::DataType::kINT8 && !builder->platformHasFastInt8())
|| (dataType == nvinfer1::DataType::kHALF && !builder->platformHasFastFp16()))
{
return false;
}
return true;
}
class FileLock
{
public:
FileLock(std::string const& fileName)
: fileName(fileName)
{
std::string lockFileName = fileName + ".lock";
#ifdef _MSC_VER
sample::gLogVerbose << "Trying to set exclusive file lock " << lockFileName << std::endl;
auto startTime = std::chrono::high_resolution_clock::now();
// MS docs said this is a blocking IO if "FILE_FLAG_OVERLAPPED" is not provided
lock = CreateFileA(lockFileName.c_str(), GENERIC_WRITE, 0, NULL, OPEN_ALWAYS, 0, NULL);
if (lock != INVALID_HANDLE_VALUE)
{
float const time
= std::chrono::duration<float>(std::chrono::high_resolution_clock::now() - startTime).count();
sample::gLogVerbose << "File locked in " << time << " seconds." << std::endl;
}
else
{
throw std::runtime_error("Failed to lock " + lockFileName + "!");
}
#elif defined(__QNX__)
// We once enabled the file lock on QNX, lockf(F_TLOCK) return -1 and the reported error is
// The error generated was 89
// That means : Function not implemented
#else
fp = fopen(lockFileName.c_str(), "wb+");
if (!fp)
{
throw std::runtime_error("Cannot open " + lockFileName + "!");
}
fd = fileno(fp);
sample::gLogVerbose << "Trying to set exclusive file lock " << lockFileName << std::endl;
auto startTime = std::chrono::high_resolution_clock::now();
auto ret = lockf(fd, F_LOCK, 0);
if (ret != 0)
{
fd = -1;
fclose(fp);
throw std::runtime_error("Failed to lock " + lockFileName + "!");
}
float const time = std::chrono::duration<float>(std::chrono::high_resolution_clock::now() - startTime).count();
sample::gLogVerbose << "File locked in " << time << " seconds." << std::endl;
#endif
}
~FileLock()
{
std::string lockFileName = fileName + ".lock";
#ifdef _MSC_VER
if (lock != INVALID_HANDLE_VALUE)
{
sample::gLogVerbose << "Trying to remove exclusive file lock " << lockFileName << std::endl;
auto startTime = std::chrono::high_resolution_clock::now();
CloseHandle(lock);
float const time
= std::chrono::duration<float>(std::chrono::high_resolution_clock::now() - startTime).count();
sample::gLogVerbose << "File unlocked in " << time << " seconds." << std::endl;
}
#elif defined(__QNX__)
// We once enabled the file lock on QNX, lockf(F_TLOCK) return -1 and the reported error is
// The error generated was 89
// That means : Function not implemented
#else
if (fd != -1)
{
sample::gLogVerbose << "Trying to remove exclusive file lock " << lockFileName << std::endl;
auto startTime = std::chrono::high_resolution_clock::now();
auto ret = lockf(fd, F_ULOCK, 0);
if (ret != 0)
{
sample::gLogVerbose << "Failed to unlock " << lockFileName << "!" << std::endl;
}
else
{
fd = -1;
fclose(fp);
float const time
= std::chrono::duration<float>(std::chrono::high_resolution_clock::now() - startTime).count();
sample::gLogVerbose << "File unlocked in " << time << " seconds." << std::endl;
}
}
#endif
}
private:
FileLock() = delete; // no default ctor
FileLock(FileLock const&) = delete; // no copy ctor
FileLock& operator=(FileLock const&) = delete; // no copy assignment
const std::string fileName; // the file being protected
#ifdef _MSC_VER
HANDLE lock;
#else
FILE* fp;
int32_t fd;
#endif
};
inline std::vector<char> loadTimingCacheFile(std::string const& inFileName)
{
std::unique_ptr<samplesCommon::FileLock> fileLock{new samplesCommon::FileLock(inFileName)};
std::ifstream iFile(inFileName, std::ios::in | std::ios::binary);
if (!iFile)
{
sample::gLogWarning << "Could not read timing cache from: " << inFileName
<< ". A new timing cache will be generated and written." << std::endl;
return std::vector<char>();
}
iFile.seekg(0, std::ifstream::end);
size_t fsize = iFile.tellg();
iFile.seekg(0, std::ifstream::beg);
std::vector<char> content(fsize);
iFile.read(content.data(), fsize);
iFile.close();
sample::gLogInfo << "Loaded " << fsize << " bytes of timing cache from " << inFileName << std::endl;
return content;
}
inline void saveTimingCacheFile(std::string const& outFileName, nvinfer1::IHostMemory const* blob)
{
std::unique_ptr<samplesCommon::FileLock> fileLock{new samplesCommon::FileLock(outFileName)};
std::ofstream oFile(outFileName, std::ios::out | std::ios::binary);
if (!oFile)
{
sample::gLogWarning << "Could not write timing cache to: " << outFileName << std::endl;
return;
}
oFile.write((char*) blob->data(), blob->size());
oFile.close();
sample::gLogInfo << "Saved " << blob->size() << " bytes of timing cache to " << outFileName << std::endl;
}
inline void updateTimingCacheFile(std::string const& fileName, nvinfer1::ITimingCache const* timingCache)
{
// Prepare empty timingCache in case that there is no existing file to read
std::unique_ptr<nvinfer1::IBuilder> builder{createBuilder()};
std::unique_ptr<nvinfer1::IBuilderConfig> config{builder->createBuilderConfig()};
std::unique_ptr<nvinfer1::ITimingCache> fileTimingCache{
config->createTimingCache(static_cast<const void*>(nullptr), 0)};
std::unique_ptr<samplesCommon::FileLock> fileLock{new samplesCommon::FileLock(fileName)};
std::ifstream iFile(fileName, std::ios::in | std::ios::binary);
if (iFile)
{
iFile.seekg(0, std::ifstream::end);
size_t fsize = iFile.tellg();
iFile.seekg(0, std::ifstream::beg);
std::vector<char> content(fsize);
iFile.read(content.data(), fsize);
iFile.close();
sample::gLogInfo << "Loaded " << fsize << " bytes of timing cache from " << fileName << std::endl;
fileTimingCache.reset(config->createTimingCache(static_cast<const void*>(content.data()), content.size()));
if (!fileTimingCache)
{
throw std::runtime_error("Failed to create timingCache from " + fileName + "!");
}
}
fileTimingCache->combine(*timingCache, false);
std::unique_ptr<nvinfer1::IHostMemory> blob{fileTimingCache->serialize()};
if (!blob)
{
throw std::runtime_error("Failed to serialize ITimingCache!");
}
std::ofstream oFile(fileName, std::ios::out | std::ios::binary);
if (!oFile)
{
sample::gLogWarning << "Could not write timing cache to: " << fileName << std::endl;
return;
}
oFile.write((char*) blob->data(), blob->size());
oFile.close();
sample::gLogInfo << "Saved " << blob->size() << " bytes of timing cache to " << fileName << std::endl;
}
} // namespace samplesCommon
inline std::ostream& operator<<(std::ostream& os, const nvinfer1::Dims& dims)
{
os << "(";
for (int i = 0; i < dims.nbDims; ++i)
{
os << (i ? ", " : "") << dims.d[i];
}
return os << ")";
}
#endif // TENSORRT_COMMON_H