You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

265 lines
7.9 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TRT_SAMPLE_INFERENCE_H
#define TRT_SAMPLE_INFERENCE_H
#include "sampleEngines.h"
#include "sampleReporting.h"
#include "sampleUtils.h"
#include <functional>
#include <iostream>
#include <list>
#include <memory>
#include <string>
#include <vector>
#include "NvInfer.h"
#include "NvInferSafeRuntime.h"
namespace sample
{
struct InferenceEnvironment
{
InferenceEnvironment() = delete;
InferenceEnvironment(InferenceEnvironment const& other) = delete;
InferenceEnvironment(InferenceEnvironment&& other) = delete;
InferenceEnvironment(BuildEnvironment& bEnv) : engine(std::move(bEnv.engine)), safe(bEnv.engine.isSafe())
{
}
LazilyDeserializedEngine engine;
std::unique_ptr<Profiler> profiler;
std::vector<std::unique_ptr<nvinfer1::IExecutionContext>> contexts;
std::vector<std::unique_ptr<Bindings>> bindings;
bool error{false};
bool safe{false};
std::vector<std::unique_ptr<nvinfer1::safe::IExecutionContext>> safeContexts;
template <class ContextType>
inline ContextType* getContext(int32_t streamIdx);
//! Storage for input shape tensors.
//!
//! It's important that the addresses of the data do not change between the calls to
//! setTensorAddress/setInputShape (which tells TensorRT where the input shape tensor is)
//! and enqueueV2/enqueueV3 (when TensorRT might use the input shape tensor).
//!
//! The input shape tensors could alternatively be handled via member bindings,
//! but it simplifies control-flow to store the data here since it's shared across
//! the bindings.
std::list<std::vector<int32_t>> inputShapeTensorValues;
};
template <>
inline nvinfer1::IExecutionContext* InferenceEnvironment::getContext(int32_t streamIdx)
{
return contexts[streamIdx].get();
}
template <>
inline nvinfer1::safe::IExecutionContext* InferenceEnvironment::getContext(int32_t streamIdx)
{
return safeContexts[streamIdx].get();
}
//!
//! \brief Set up contexts and bindings for inference
//!
bool setUpInference(InferenceEnvironment& iEnv, InferenceOptions const& inference, SystemOptions const& system);
//!
//! \brief Deserialize the engine and time how long it takes.
//!
bool timeDeserialize(InferenceEnvironment& iEnv, SystemOptions const& sys);
//!
//! \brief Run inference and collect timing, return false if any error hit during inference
//!
bool runInference(
InferenceOptions const& inference, InferenceEnvironment& iEnv, int32_t device, std::vector<InferenceTrace>& trace);
//!
//! \brief Get layer information of the engine.
//!
std::string getLayerInformation(
nvinfer1::ICudaEngine* engine, nvinfer1::IExecutionContext* context, nvinfer1::LayerInformationFormat format);
struct Binding
{
bool isInput{false};
std::unique_ptr<IMirroredBuffer> buffer;
std::unique_ptr<OutputAllocator> outputAllocator;
int64_t volume{0};
nvinfer1::DataType dataType{nvinfer1::DataType::kFLOAT};
void fill(std::string const& fileName);
void fill();
void dump(std::ostream& os, nvinfer1::Dims dims, nvinfer1::Dims strides, int32_t vectorDim, int32_t spv,
std::string const separator = " ") const;
};
struct TensorInfo
{
int32_t bindingIndex{-1};
char const* name{nullptr};
nvinfer1::Dims dims{};
bool isDynamic{};
int32_t comps{-1};
nvinfer1::Dims strides{};
int32_t vectorDimIndex{-1};
bool isInput{};
nvinfer1::DataType dataType{};
int64_t vol{-1};
void updateVolume(int32_t batch)
{
vol = volume(dims, strides, vectorDimIndex, comps, batch);
}
};
class Bindings
{
public:
Bindings() = delete;
explicit Bindings(bool useManaged)
: mUseManaged(useManaged)
{
}
void addBinding(TensorInfo const& tensorInfo, std::string const& fileName = "");
void** getDeviceBuffers();
void transferInputToDevice(TrtCudaStream& stream);
void transferOutputToHost(TrtCudaStream& stream);
void fill(int binding, std::string const& fileName)
{
mBindings[binding].fill(fileName);
}
void fill(int binding)
{
mBindings[binding].fill();
}
template <typename ContextType>
void dumpBindingDimensions(int32_t binding, ContextType const& context, std::ostream& os) const;
template <typename ContextType>
void dumpBindingValues(ContextType const& context, int32_t binding, std::ostream& os,
std::string const& separator = " ", int32_t batch = 1) const;
template <typename ContextType>
void dumpRawBindingToFiles(ContextType const& context, std::ostream& os) const;
template <typename ContextType>
void dumpInputs(ContextType const& context, std::ostream& os) const
{
auto isInput = [](Binding const& b) { return b.isInput; };
dumpBindings(context, isInput, os);
}
template <typename ContextType>
void dumpOutputs(ContextType const& context, std::ostream& os) const
{
auto isOutput = [](Binding const& b) { return !b.isInput; };
dumpBindings(context, isOutput, os);
}
template <typename ContextType>
void dumpBindings(ContextType const& context, std::ostream& os) const
{
auto all = [](Binding const& b) { return true; };
dumpBindings(context, all, os);
}
template <typename ContextType>
void dumpBindings(
ContextType const& context, std::function<bool(Binding const&)> predicate, std::ostream& os) const
{
for (auto const& n : mNames)
{
auto const binding = n.second;
if (predicate(mBindings[binding]))
{
os << n.first << ": (";
dumpBindingDimensions(binding, context, os);
os << ")" << std::endl;
dumpBindingValues(context, binding, os);
os << std::endl;
}
}
}
std::unordered_map<std::string, int> getInputBindings() const
{
auto isInput = [](Binding const& b) { return b.isInput; };
return getBindings(isInput);
}
std::unordered_map<std::string, int> getOutputBindings() const
{
auto isOutput = [](Binding const& b) { return !b.isInput; };
return getBindings(isOutput);
}
std::unordered_map<std::string, int> getBindings() const
{
auto all = [](Binding const& b) { return true; };
return getBindings(all);
}
std::unordered_map<std::string, int> getBindings(std::function<bool(Binding const&)> predicate) const;
bool setTensorAddresses(nvinfer1::IExecutionContext& context) const;
bool setSafeTensorAddresses(nvinfer1::safe::IExecutionContext& context) const;
private:
std::unordered_map<std::string, int32_t> mNames;
std::vector<Binding> mBindings;
std::vector<void*> mDevicePointers;
bool mUseManaged{false};
};
struct TaskInferenceEnvironment
{
TaskInferenceEnvironment(std::string engineFile, InferenceOptions inference, int32_t deviceId = 0,
int32_t DLACore = -1, int32_t bs = batchNotProvided);
InferenceOptions iOptions{};
int32_t device{defaultDevice};
int32_t batch{batchNotProvided};
std::unique_ptr<InferenceEnvironment> iEnv;
std::vector<InferenceTrace> trace;
};
bool runMultiTasksInference(std::vector<std::unique_ptr<TaskInferenceEnvironment>>& tEnvList);
} // namespace sample
#endif // TRT_SAMPLE_INFERENCE_H