/* * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "sampleInference.h" #include "sampleOptions.h" #include "sampleReporting.h" using namespace nvinfer1; namespace sample { namespace { //! //! \brief Find percentile in an ascending sequence of timings //! \note percentile must be in [0, 100]. Otherwise, an exception is thrown. //! template float findPercentile(float percentile, std::vector const& timings, T const& toFloat) { int32_t const all = static_cast(timings.size()); int32_t const exclude = static_cast((1 - percentile / 100) * all); if (timings.empty()) { return std::numeric_limits::infinity(); } if (percentile < 0.F || percentile > 100.F) { throw std::runtime_error("percentile is not in [0, 100]!"); } return toFloat(timings[std::max(all - 1 - exclude, 0)]); } //! //! \brief Find median in a sorted sequence of timings //! template float findMedian(std::vector const& timings, T const& toFloat) { if (timings.empty()) { return std::numeric_limits::infinity(); } int32_t const m = timings.size() / 2; if (timings.size() % 2) { return toFloat(timings[m]); } return (toFloat(timings[m - 1]) + toFloat(timings[m])) / 2; } //! //! \brief Find coefficient of variance (which is std / mean) in a sorted sequence of timings given the mean //! template float findCoeffOfVariance(std::vector const& timings, T const& toFloat, float mean) { if (timings.empty()) { return 0; } if (mean == 0.F) { return std::numeric_limits::infinity(); } auto const metricAccumulator = [toFloat, mean](float acc, InferenceTime const& a) { float const diff = toFloat(a) - mean; return acc + diff * diff; }; float const variance = std::accumulate(timings.begin(), timings.end(), 0.F, metricAccumulator) / timings.size(); return std::sqrt(variance) / mean * 100.F; } inline InferenceTime traceToTiming(const InferenceTrace& a) { return InferenceTime((a.enqEnd - a.enqStart), (a.h2dEnd - a.h2dStart), (a.computeEnd - a.computeStart), (a.d2hEnd - a.d2hStart)); } } // namespace void printProlog(int32_t warmups, int32_t timings, float warmupMs, float benchTimeMs, std::ostream& os) { os << "Warmup completed " << warmups << " queries over " << warmupMs << " ms" << std::endl; os << "Timing trace has " << timings << " queries over " << benchTimeMs / 1000 << " s" << std::endl; } void printTiming(std::vector const& timings, int32_t runsPerAvg, std::ostream& os) { int32_t count = 0; InferenceTime sum; os << std::endl; os << "=== Trace details ===" << std::endl; os << "Trace averages of " << runsPerAvg << " runs:" << std::endl; for (auto const& t : timings) { sum += t; if (++count == runsPerAvg) { // clang-format off os << "Average on " << runsPerAvg << " runs - GPU latency: " << sum.compute / runsPerAvg << " ms - Host latency: " << sum.latency() / runsPerAvg << " ms (enqueue " << sum.enq / runsPerAvg << " ms)" << std::endl; // clang-format on count = 0; sum.enq = 0; sum.h2d = 0; sum.compute = 0; sum.d2h = 0; } } } void printMetricExplanations(std::ostream& os) { os << std::endl; os << "=== Explanations of the performance metrics ===" << std::endl; os << "Total Host Walltime: the host walltime from when the first query (after warmups) is enqueued to when the " "last query is completed." << std::endl; os << "GPU Compute Time: the GPU latency to execute the kernels for a query." << std::endl; os << "Total GPU Compute Time: the summation of the GPU Compute Time of all the queries. If this is significantly " "shorter than Total Host Walltime, the GPU may be under-utilized because of host-side overheads or data " "transfers." << std::endl; os << "Throughput: the observed throughput computed by dividing the number of queries by the Total Host Walltime. " "If this is significantly lower than the reciprocal of GPU Compute Time, the GPU may be under-utilized " "because of host-side overheads or data transfers." << std::endl; os << "Enqueue Time: the host latency to enqueue a query. If this is longer than GPU Compute Time, the GPU may be " "under-utilized." << std::endl; os << "H2D Latency: the latency for host-to-device data transfers for input tensors of a single query." << std::endl; os << "D2H Latency: the latency for device-to-host data transfers for output tensors of a single query." << std::endl; os << "Latency: the summation of H2D Latency, GPU Compute Time, and D2H Latency. This is the latency to infer a " "single query." << std::endl; } PerformanceResult getPerformanceResult(std::vector const& timings, std::function metricGetter, std::vector const& percentiles) { auto const metricComparator = [metricGetter](InferenceTime const& a, InferenceTime const& b) { return metricGetter(a) < metricGetter(b); }; auto const metricAccumulator = [metricGetter](float acc, InferenceTime const& a) { return acc + metricGetter(a); }; std::vector newTimings = timings; std::sort(newTimings.begin(), newTimings.end(), metricComparator); PerformanceResult result; result.min = metricGetter(newTimings.front()); result.max = metricGetter(newTimings.back()); result.mean = std::accumulate(newTimings.begin(), newTimings.end(), 0.0f, metricAccumulator) / newTimings.size(); result.median = findMedian(newTimings, metricGetter); for (auto percentile : percentiles) { result.percentiles.emplace_back(findPercentile(percentile, newTimings, metricGetter)); } result.coeffVar = findCoeffOfVariance(newTimings, metricGetter, result.mean); return result; } void printEpilog(std::vector const& timings, float walltimeMs, std::vector const& percentiles, int32_t batchSize, int32_t infStreams, std::ostream& osInfo, std::ostream& osWarning, std::ostream& osVerbose) { float const throughput = batchSize * timings.size() / walltimeMs * 1000; auto const getLatency = [](InferenceTime const& t) { return t.latency(); }; auto const latencyResult = getPerformanceResult(timings, getLatency, percentiles); auto const getEnqueue = [](InferenceTime const& t) { return t.enq; }; auto const enqueueResult = getPerformanceResult(timings, getEnqueue, percentiles); auto const getH2d = [](InferenceTime const& t) { return t.h2d; }; auto const h2dResult = getPerformanceResult(timings, getH2d, percentiles); auto const getCompute = [](InferenceTime const& t) { return t.compute; }; auto const gpuComputeResult = getPerformanceResult(timings, getCompute, percentiles); auto const getD2h = [](InferenceTime const& t) { return t.d2h; }; auto const d2hResult = getPerformanceResult(timings, getD2h, percentiles); auto const toPerfString = [&](const PerformanceResult& r) { std::stringstream s; s << "min = " << r.min << " ms, max = " << r.max << " ms, mean = " << r.mean << " ms, " << "median = " << r.median << " ms"; for (int32_t i = 0, n = percentiles.size(); i < n; ++i) { s << ", percentile(" << percentiles[i] << "%) = " << r.percentiles[i] << " ms"; } return s.str(); }; osInfo << std::endl; osInfo << "=== Performance summary ===" << std::endl; osInfo << "Throughput: " << throughput << " qps" << std::endl; osInfo << "Latency: " << toPerfString(latencyResult) << std::endl; osInfo << "Enqueue Time: " << toPerfString(enqueueResult) << std::endl; osInfo << "H2D Latency: " << toPerfString(h2dResult) << std::endl; osInfo << "GPU Compute Time: " << toPerfString(gpuComputeResult) << std::endl; osInfo << "D2H Latency: " << toPerfString(d2hResult) << std::endl; osInfo << "Total Host Walltime: " << walltimeMs / 1000 << " s" << std::endl; osInfo << "Total GPU Compute Time: " << gpuComputeResult.mean * timings.size() / 1000 << " s" << std::endl; // Report warnings if the throughput is bound by other factors than GPU Compute Time. constexpr float kENQUEUE_BOUND_REPORTING_THRESHOLD{0.8F}; if (enqueueResult.median > kENQUEUE_BOUND_REPORTING_THRESHOLD * gpuComputeResult.median) { osWarning << "* Throughput may be bound by Enqueue Time rather than GPU Compute and the GPU may be under-utilized." << std::endl; osWarning << " If not already in use, --useCudaGraph (utilize CUDA graphs where possible) may increase the " "throughput." << std::endl; } if (h2dResult.median >= gpuComputeResult.median) { osWarning << "* Throughput may be bound by host-to-device transfers for the inputs rather than GPU Compute and " "the GPU may be under-utilized." << std::endl; osWarning << " Add --noDataTransfers flag to disable data transfers." << std::endl; } if (d2hResult.median >= gpuComputeResult.median) { osWarning << "* Throughput may be bound by device-to-host transfers for the outputs rather than GPU Compute " "and the GPU may be under-utilized." << std::endl; osWarning << " Add --noDataTransfers flag to disable data transfers." << std::endl; } // Report warnings if the GPU Compute Time is unstable. constexpr float kUNSTABLE_PERF_REPORTING_THRESHOLD{1.0F}; if (gpuComputeResult.coeffVar > kUNSTABLE_PERF_REPORTING_THRESHOLD) { osWarning << "* GPU compute time is unstable, with coefficient of variance = " << gpuComputeResult.coeffVar << "%." << std::endl; osWarning << " If not already in use, locking GPU clock frequency or adding --useSpinWait may improve the " << "stability." << std::endl; } // Report warnings if multiple inference streams are used. if (infStreams > 1) { osWarning << "* Multiple inference streams are used. Latencies may not be accurate since inferences may run in " << " parallel. Please use \"Throughput\" as the performance metric instead." << std::endl; } // Explain what the metrics mean. osInfo << "Explanations of the performance metrics are printed in the verbose logs." << std::endl; printMetricExplanations(osVerbose); osInfo << std::endl; } void printPerformanceReport(std::vector const& trace, ReportingOptions const& reportingOpts, InferenceOptions const& infOpts, std::ostream& osInfo, std::ostream& osWarning, std::ostream& osVerbose) { int32_t batchSize = infOpts.batch; float const warmupMs = infOpts.warmup; auto const isNotWarmup = [&warmupMs](const InferenceTrace& a) { return a.computeStart >= warmupMs; }; auto const noWarmup = std::find_if(trace.begin(), trace.end(), isNotWarmup); int32_t const warmups = noWarmup - trace.begin(); float const benchTime = trace.back().d2hEnd - noWarmup->h2dStart; // when implicit batch used, batchSize = options.inference.batch, which is parsed through --batch // when explicit batch used, batchSize = options.inference.batch = 0 // treat inference with explicit batch as a single query and report the throughput batchSize = batchSize ? batchSize : 1; printProlog(warmups * batchSize, (trace.size() - warmups) * batchSize, warmupMs, benchTime, osInfo); std::vector timings(trace.size() - warmups); std::transform(noWarmup, trace.end(), timings.begin(), traceToTiming); printTiming(timings, reportingOpts.avgs, osInfo); printEpilog( timings, benchTime, reportingOpts.percentiles, batchSize, infOpts.infStreams, osInfo, osWarning, osVerbose); if (!reportingOpts.exportTimes.empty()) { exportJSONTrace(trace, reportingOpts.exportTimes, warmups); } } //! Printed format: //! [ value, ...] //! value ::= { "start enq : time, "end enq" : time, "start h2d" : time, "end h2d" : time, "start compute" : time, //! "end compute" : time, "start d2h" : time, "end d2h" : time, "h2d" : time, "compute" : time, //! "d2h" : time, "latency" : time } //! void exportJSONTrace(std::vector const& trace, std::string const& fileName, int32_t const nbWarmups) { std::ofstream os(fileName, std::ofstream::trunc); os << "[" << std::endl; char const* sep = " "; for (auto iter = trace.begin() + nbWarmups; iter < trace.end(); ++iter) { auto const& t = *iter; InferenceTime const it(traceToTiming(t)); os << sep << "{ "; sep = ", "; // clang-format off os << "\"startEnqMs\" : " << t.enqStart << sep << "\"endEnqMs\" : " << t.enqEnd << sep << "\"startH2dMs\" : " << t.h2dStart << sep << "\"endH2dMs\" : " << t.h2dEnd << sep << "\"startComputeMs\" : " << t.computeStart << sep << "\"endComputeMs\" : " << t.computeEnd << sep << "\"startD2hMs\" : " << t.d2hStart << sep << "\"endD2hMs\" : " << t.d2hEnd << sep << "\"h2dMs\" : " << it.h2d << sep << "\"computeMs\" : " << it.compute << sep << "\"d2hMs\" : " << it.d2h << sep << "\"latencyMs\" : " << it.latency() << " }" << std::endl; // clang-format on } os << "]" << std::endl; } void Profiler::reportLayerTime(char const* layerName, float timeMs) noexcept { if (mIterator == mLayers.end()) { bool const first = !mLayers.empty() && mLayers.begin()->name == layerName; mUpdatesCount += mLayers.empty() || first; if (first) { mIterator = mLayers.begin(); } else { mLayers.emplace_back(); mLayers.back().name = layerName; mIterator = mLayers.end() - 1; } } mIterator->timeMs.push_back(timeMs); ++mIterator; } void Profiler::print(std::ostream& os) const noexcept { std::string const nameHdr("Layer"); std::string const timeHdr(" Time (ms)"); std::string const avgHdr(" Avg. Time (ms)"); std::string const medHdr(" Median Time (ms)"); std::string const percentageHdr(" Time %"); float const totalTimeMs = getTotalTime(); auto const cmpLayer = [](LayerProfile const& a, LayerProfile const& b) { return a.name.size() < b.name.size(); }; auto const longestName = std::max_element(mLayers.begin(), mLayers.end(), cmpLayer); auto const nameLength = std::max(longestName->name.size() + 1, nameHdr.size()); auto const timeLength = timeHdr.size(); auto const avgLength = avgHdr.size(); auto const medLength = medHdr.size(); auto const percentageLength = percentageHdr.size(); os << std::endl << "=== Profile (" << mUpdatesCount << " iterations ) ===" << std::endl << std::setw(nameLength) << nameHdr << timeHdr << avgHdr << medHdr << percentageHdr << std::endl; for (auto const& p : mLayers) { if (p.timeMs.empty() || getTotalTime(p) == 0.F) { // there is no point to print profiling for layer that didn't run at all continue; } // clang-format off os << std::setw(nameLength) << p.name << std::setw(timeLength) << std::fixed << std::setprecision(2) << getTotalTime(p) << std::setw(avgLength) << std::fixed << std::setprecision(4) << getAvgTime(p) << std::setw(medLength) << std::fixed << std::setprecision(4) << getMedianTime(p) << std::setw(percentageLength) << std::fixed << std::setprecision(1) << getTotalTime(p) / totalTimeMs * 100 << std::endl; } { os << std::setw(nameLength) << "Total" << std::setw(timeLength) << std::fixed << std::setprecision(2) << totalTimeMs << std::setw(avgLength) << std::fixed << std::setprecision(4) << totalTimeMs / mUpdatesCount << std::setw(medLength) << std::fixed << std::setprecision(4) << getMedianTime() << std::setw(percentageLength) << std::fixed << std::setprecision(1) << 100.0 << std::endl; // clang-format on } os << std::endl; } void Profiler::exportJSONProfile(std::string const& fileName) const noexcept { std::ofstream os(fileName, std::ofstream::trunc); os << "[" << std::endl << " { \"count\" : " << mUpdatesCount << " }" << std::endl; auto const totalTimeMs = getTotalTime(); for (auto const& l : mLayers) { // clang-format off os << ", {" << R"( "name" : ")" << l.name << R"(")" R"(, "timeMs" : )" << getTotalTime(l) << R"(, "averageMs" : )" << getAvgTime(l) << R"(, "medianMs" : )" << getMedianTime(l) << R"(, "percentage" : )" << getTotalTime(l) / totalTimeMs * 100 << " }" << std::endl; // clang-format on } os << "]" << std::endl; } void dumpInputs(nvinfer1::IExecutionContext const& context, Bindings const& bindings, std::ostream& os) { os << "Input Tensors:" << std::endl; bindings.dumpInputs(context, os); } template void dumpOutputs(ContextType const& context, Bindings const& bindings, std::ostream& os) { os << "Output Tensors:" << std::endl; bindings.dumpOutputs(context, os); } template void dumpOutputs(nvinfer1::IExecutionContext const& context, Bindings const& bindings, std::ostream& os); template void dumpOutputs(nvinfer1::safe::IExecutionContext const& context, Bindings const& bindings, std::ostream& os); template void dumpRawBindingsToFiles(ContextType const& context, Bindings const& bindings, std::ostream& os) { bindings.dumpRawBindingToFiles(context, os); } template void dumpRawBindingsToFiles(nvinfer1::IExecutionContext const& context, Bindings const& bindings, std::ostream& os); template void dumpRawBindingsToFiles(nvinfer1::safe::IExecutionContext const& context, Bindings const& bindings, std::ostream& os); template void exportJSONOutput( ContextType const& context, Bindings const& bindings, std::string const& fileName, int32_t batch) { std::ofstream os(fileName, std::ofstream::trunc); std::string sep = " "; auto const output = bindings.getOutputBindings(); os << "[" << std::endl; for (auto const& binding : output) { // clang-format off os << sep << R"({ "name" : ")" << binding.first << "\"" << std::endl; sep = ", "; os << " " << sep << R"("dimensions" : ")"; bindings.dumpBindingDimensions(binding.second, context, os); os << "\"" << std::endl; os << " " << sep << "\"values\" : [ "; bindings.dumpBindingValues(context, binding.second, os, sep, batch); os << " ]" << std::endl << " }" << std::endl; // clang-format on } os << "]" << std::endl; } template void exportJSONOutput(nvinfer1::IExecutionContext const& context, Bindings const& bindings, std::string const& fileName, int32_t batch); template void exportJSONOutput(nvinfer1::safe::IExecutionContext const& context, Bindings const& bindings, std::string const& fileName, int32_t batch); bool printLayerInfo( ReportingOptions const& reporting, nvinfer1::ICudaEngine* engine, nvinfer1::IExecutionContext* context) { if (reporting.layerInfo) { sample::gLogInfo << "Layer Information:" << std::endl; sample::gLogInfo << getLayerInformation(engine, context, nvinfer1::LayerInformationFormat::kONELINE) << std::flush; } if (!reporting.exportLayerInfo.empty()) { std::ofstream os(reporting.exportLayerInfo, std::ofstream::trunc); os << getLayerInformation(engine, context, nvinfer1::LayerInformationFormat::kJSON) << std::flush; } return true; } void printPerformanceProfile(ReportingOptions const& reporting, InferenceEnvironment& iEnv) { if (reporting.profile) { iEnv.profiler->print(sample::gLogInfo); } if (!reporting.exportProfile.empty()) { iEnv.profiler->exportJSONProfile(reporting.exportProfile); } // Print an warning about total per-layer latency when auxiliary streams are used. if (!iEnv.safe && (reporting.profile || !reporting.exportProfile.empty())) { int32_t const nbAuxStreams = iEnv.engine.get()->getNbAuxStreams(); if (nbAuxStreams > 0) { sample::gLogWarning << "The engine uses " << nbAuxStreams << " auxiliary streams, so the \"Total\" latency " << "may not be accurate because some layers may have run in parallel!" << std::endl; } } } namespace details { template void dump(std::unique_ptr const& context, std::unique_ptr const& binding, ReportingOptions const& reporting, int32_t batch) { if (!context) { sample::gLogError << "Empty context! Skip printing outputs." << std::endl; return; } if (reporting.output) { dumpOutputs(*context, *binding, sample::gLogInfo); } if (reporting.dumpRawBindings) { dumpRawBindingsToFiles(*context, *binding, sample::gLogInfo); } if (!reporting.exportOutput.empty()) { exportJSONOutput(*context, *binding, reporting.exportOutput, batch); } } } // namespace details void printOutput(ReportingOptions const& reporting, InferenceEnvironment const& iEnv, int32_t batch) { auto const& binding = iEnv.bindings.at(0); if (!binding) { sample::gLogError << "Empty bindings! Skip printing outputs." << std::endl; return; } if (iEnv.safe) { auto const& context = iEnv.safeContexts.at(0); details::dump(context, binding, reporting, batch); } else { auto const& context = iEnv.contexts.at(0); details::dump(context, binding, reporting, batch); } } } // namespace sample