熊继淙 1 year ago
commit 4be8422fda

@ -0,0 +1,8 @@
from ultralytics import YOLO
# Load a model
model = YOLO('E:/code_files/train/ultralytics-main/model_files/yolov8x.pt') # load an official model
model = YOLO('E:/code_files/jy/20240411_model_test/train/weights/best.pt') # load a custom trained model
# Export the model
model.export(format='engine',half=True)

@ -0,0 +1,70 @@
from ultralytics import YOLO
from PIL import Image
import cv2
import os
# def draw_boxes(image, detections):
# for detection in detections:
# label_name, bbox_list = detection['label'], detection['bbox']
# confidence = detection['confidence']
# # 提取边界框坐标
# x1, y1, x2, y2 = map(int, bbox_list)
# # 在图像上绘制边界框
# cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
# # 在图像上写入标签名和置信度
# text = f"{label_name}: {confidence}"
# cv2.putText(image, text, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# return image
# def analysis_yolov8(frame, model_coco, confidence_set):
# results_coco = model_coco(frame)
# re_list = []
# if results_coco:
# for r in results_coco:
# boxes = r.boxes
# for box in boxes:
# b = box.xyxy[0] # 获取边界框坐标
# c = box.cls
# labels_name = model_coco.names[int(c)]
# confidence = float(box.conf)
# confidence = round(confidence, 2)
# if confidence < confidence_set:
# continue
# re_dict = {'label': labels_name, 'bbox': b, 'confidence': confidence}
# re_list.append(re_dict)
# return re_list
# # # 创建新文件夹保存结果
# output_folder = "E:/code_files/jy/20240411_test_img_file/t_0"
# os.makedirs(output_folder, exist_ok=True)
# 加载模型和图像
model = YOLO("E:/code_files/jy/20240411_model_test/train/weights/best.onnx")
img_files = r"E:\code_files\jy\20240423"
for filename in os.listdir(img_files):
img_path = os.path.join(img_files, filename)
model.predict(img_path, save=True)
# frame = cv2.imread(img_path) # 替换为你的图像路径
# 调用检测函数获取边界框结果
# detections = analysis_yolov8(frame, model, confidence_set=0.5)
# # 绘制边界框和标签
# annotated_image = draw_boxes(frame, detections)
# # 保存结果图像到新文件夹
# output_path = os.path.join(output_folder, filename)
# cv2.imwrite(output_path, annotated_image)
# print(f"Annotated image saved at: {output_path}")

@ -0,0 +1,11 @@
from ultralytics import YOLO
# Load a model
model = YOLO("/home/yaxin/wangying/fd/yolov8/ultralytics/ultralytics/cfg/models/v8/yolov8.yaml") # build a new model from scratch
model = YOLO("/home/yaxin/wangying/fd/yolov8/yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="/home/yaxin/wangying/fd/yolov8/person.yaml", epochs=1000) # train the model
metrics = model.val() # evaluate model performance on the validation set
# results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
# path = model.export(format="onnx") # export the model to ONNX format
Loading…
Cancel
Save