You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
551 lines
20 KiB
Python
551 lines
20 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
"""Block modules."""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv
|
|
from .transformer import TransformerBlock
|
|
|
|
__all__ = (
|
|
"DFL",
|
|
"HGBlock",
|
|
"HGStem",
|
|
"SPP",
|
|
"SPPF",
|
|
"C1",
|
|
"C2",
|
|
"C3",
|
|
"C2f",
|
|
"C2fAttn",
|
|
"ImagePoolingAttn",
|
|
"ContrastiveHead",
|
|
"BNContrastiveHead",
|
|
"C3x",
|
|
"C3TR",
|
|
"C3Ghost",
|
|
"GhostBottleneck",
|
|
"Bottleneck",
|
|
"BottleneckCSP",
|
|
"Proto",
|
|
"RepC3",
|
|
"ResNetLayer",
|
|
)
|
|
|
|
|
|
class DFL(nn.Module):
|
|
"""
|
|
Integral module of Distribution Focal Loss (DFL).
|
|
|
|
Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
|
|
"""
|
|
|
|
def __init__(self, c1=16):
|
|
"""Initialize a convolutional layer with a given number of input channels."""
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
|
|
x = torch.arange(c1, dtype=torch.float)
|
|
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
|
|
self.c1 = c1
|
|
|
|
def forward(self, x):
|
|
"""Applies a transformer layer on input tensor 'x' and returns a tensor."""
|
|
b, c, a = x.shape # batch, channels, anchors
|
|
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
|
|
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
|
|
|
|
|
|
class Proto(nn.Module):
|
|
"""YOLOv8 mask Proto module for segmentation models."""
|
|
|
|
def __init__(self, c1, c_=256, c2=32):
|
|
"""
|
|
Initializes the YOLOv8 mask Proto module with specified number of protos and masks.
|
|
|
|
Input arguments are ch_in, number of protos, number of masks.
|
|
"""
|
|
super().__init__()
|
|
self.cv1 = Conv(c1, c_, k=3)
|
|
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest')
|
|
self.cv2 = Conv(c_, c_, k=3)
|
|
self.cv3 = Conv(c_, c2)
|
|
|
|
def forward(self, x):
|
|
"""Performs a forward pass through layers using an upsampled input image."""
|
|
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
|
|
|
|
|
|
class HGStem(nn.Module):
|
|
"""
|
|
StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
|
|
|
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
|
"""
|
|
|
|
def __init__(self, c1, cm, c2):
|
|
"""Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
|
|
super().__init__()
|
|
self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
|
|
self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
|
|
self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
|
|
self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
|
|
self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass of a PPHGNetV2 backbone layer."""
|
|
x = self.stem1(x)
|
|
x = F.pad(x, [0, 1, 0, 1])
|
|
x2 = self.stem2a(x)
|
|
x2 = F.pad(x2, [0, 1, 0, 1])
|
|
x2 = self.stem2b(x2)
|
|
x1 = self.pool(x)
|
|
x = torch.cat([x1, x2], dim=1)
|
|
x = self.stem3(x)
|
|
x = self.stem4(x)
|
|
return x
|
|
|
|
|
|
class HGBlock(nn.Module):
|
|
"""
|
|
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
|
|
|
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
|
"""
|
|
|
|
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
|
|
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
|
|
super().__init__()
|
|
block = LightConv if lightconv else Conv
|
|
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
|
|
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
|
|
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
|
|
self.add = shortcut and c1 == c2
|
|
|
|
def forward(self, x):
|
|
"""Forward pass of a PPHGNetV2 backbone layer."""
|
|
y = [x]
|
|
y.extend(m(y[-1]) for m in self.m)
|
|
y = self.ec(self.sc(torch.cat(y, 1)))
|
|
return y + x if self.add else y
|
|
|
|
|
|
class SPP(nn.Module):
|
|
"""Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""
|
|
|
|
def __init__(self, c1, c2, k=(5, 9, 13)):
|
|
"""Initialize the SPP layer with input/output channels and pooling kernel sizes."""
|
|
super().__init__()
|
|
c_ = c1 // 2 # hidden channels
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
|
|
|
def forward(self, x):
|
|
"""Forward pass of the SPP layer, performing spatial pyramid pooling."""
|
|
x = self.cv1(x)
|
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
|
|
|
|
|
class SPPF(nn.Module):
|
|
"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
|
|
|
|
def __init__(self, c1, c2, k=5):
|
|
"""
|
|
Initializes the SPPF layer with given input/output channels and kernel size.
|
|
|
|
This module is equivalent to SPP(k=(5, 9, 13)).
|
|
"""
|
|
super().__init__()
|
|
c_ = c1 // 2 # hidden channels
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
|
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through Ghost Convolution block."""
|
|
x = self.cv1(x)
|
|
y1 = self.m(x)
|
|
y2 = self.m(y1)
|
|
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
|
|
|
|
|
class C1(nn.Module):
|
|
"""CSP Bottleneck with 1 convolution."""
|
|
|
|
def __init__(self, c1, c2, n=1):
|
|
"""Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
|
|
super().__init__()
|
|
self.cv1 = Conv(c1, c2, 1, 1)
|
|
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
|
|
|
|
def forward(self, x):
|
|
"""Applies cross-convolutions to input in the C3 module."""
|
|
y = self.cv1(x)
|
|
return self.m(y) + y
|
|
|
|
|
|
class C2(nn.Module):
|
|
"""CSP Bottleneck with 2 convolutions."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initializes the CSP Bottleneck with 2 convolutions module with arguments ch_in, ch_out, number, shortcut,
|
|
groups, expansion.
|
|
"""
|
|
super().__init__()
|
|
self.c = int(c2 * e) # hidden channels
|
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
|
self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2)
|
|
# self.attention = ChannelAttention(2 * self.c) # or SpatialAttention()
|
|
self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through the CSP bottleneck with 2 convolutions."""
|
|
a, b = self.cv1(x).chunk(2, 1)
|
|
return self.cv2(torch.cat((self.m(a), b), 1))
|
|
|
|
|
|
class C2f(nn.Module):
|
|
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
|
|
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
|
|
expansion.
|
|
"""
|
|
super().__init__()
|
|
self.c = int(c2 * e) # hidden channels
|
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
|
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
|
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through C2f layer."""
|
|
y = list(self.cv1(x).chunk(2, 1))
|
|
y.extend(m(y[-1]) for m in self.m)
|
|
return self.cv2(torch.cat(y, 1))
|
|
|
|
def forward_split(self, x):
|
|
"""Forward pass using split() instead of chunk()."""
|
|
y = list(self.cv1(x).split((self.c, self.c), 1))
|
|
y.extend(m(y[-1]) for m in self.m)
|
|
return self.cv2(torch.cat(y, 1))
|
|
|
|
|
|
class C3(nn.Module):
|
|
"""CSP Bottleneck with 3 convolutions."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
|
|
super().__init__()
|
|
c_ = int(c2 * e) # hidden channels
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = Conv(c1, c_, 1, 1)
|
|
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through the CSP bottleneck with 2 convolutions."""
|
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
|
|
|
|
|
class C3x(C3):
|
|
"""C3 module with cross-convolutions."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initialize C3TR instance and set default parameters."""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
self.c_ = int(c2 * e)
|
|
self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))
|
|
|
|
|
|
class RepC3(nn.Module):
|
|
"""Rep C3."""
|
|
|
|
def __init__(self, c1, c2, n=3, e=1.0):
|
|
"""Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
|
|
super().__init__()
|
|
c_ = int(c2 * e) # hidden channels
|
|
self.cv1 = Conv(c1, c2, 1, 1)
|
|
self.cv2 = Conv(c1, c2, 1, 1)
|
|
self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
|
|
self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
"""Forward pass of RT-DETR neck layer."""
|
|
return self.cv3(self.m(self.cv1(x)) + self.cv2(x))
|
|
|
|
|
|
class C3TR(C3):
|
|
"""C3 module with TransformerBlock()."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initialize C3Ghost module with GhostBottleneck()."""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
c_ = int(c2 * e)
|
|
self.m = TransformerBlock(c_, c_, 4, n)
|
|
|
|
|
|
class C3Ghost(C3):
|
|
"""C3 module with GhostBottleneck()."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
c_ = int(c2 * e) # hidden channels
|
|
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
|
|
|
|
|
class GhostBottleneck(nn.Module):
|
|
"""Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""
|
|
|
|
def __init__(self, c1, c2, k=3, s=1):
|
|
"""Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
|
|
super().__init__()
|
|
c_ = c2 // 2
|
|
self.conv = nn.Sequential(
|
|
GhostConv(c1, c_, 1, 1), # pw
|
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
|
GhostConv(c_, c2, 1, 1, act=False), # pw-linear
|
|
)
|
|
self.shortcut = (
|
|
nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
|
)
|
|
|
|
def forward(self, x):
|
|
"""Applies skip connection and concatenation to input tensor."""
|
|
return self.conv(x) + self.shortcut(x)
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
"""Standard bottleneck."""
|
|
|
|
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
|
|
"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
|
|
expansion.
|
|
"""
|
|
super().__init__()
|
|
c_ = int(c2 * e) # hidden channels
|
|
self.cv1 = Conv(c1, c_, k[0], 1)
|
|
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
|
self.add = shortcut and c1 == c2
|
|
|
|
def forward(self, x):
|
|
"""'forward()' applies the YOLO FPN to input data."""
|
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
|
|
|
|
|
class BottleneckCSP(nn.Module):
|
|
"""CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
|
|
super().__init__()
|
|
c_ = int(c2 * e) # hidden channels
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
|
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
|
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
|
self.act = nn.SiLU()
|
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
|
|
|
def forward(self, x):
|
|
"""Applies a CSP bottleneck with 3 convolutions."""
|
|
y1 = self.cv3(self.m(self.cv1(x)))
|
|
y2 = self.cv2(x)
|
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
|
|
|
|
|
class ResNetBlock(nn.Module):
|
|
"""ResNet block with standard convolution layers."""
|
|
|
|
def __init__(self, c1, c2, s=1, e=4):
|
|
"""Initialize convolution with given parameters."""
|
|
super().__init__()
|
|
c3 = e * c2
|
|
self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
|
|
self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
|
|
self.cv3 = Conv(c2, c3, k=1, act=False)
|
|
self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through the ResNet block."""
|
|
return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))
|
|
|
|
|
|
class ResNetLayer(nn.Module):
|
|
"""ResNet layer with multiple ResNet blocks."""
|
|
|
|
def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
|
|
"""Initializes the ResNetLayer given arguments."""
|
|
super().__init__()
|
|
self.is_first = is_first
|
|
|
|
if self.is_first:
|
|
self.layer = nn.Sequential(
|
|
Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
)
|
|
else:
|
|
blocks = [ResNetBlock(c1, c2, s, e=e)]
|
|
blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
|
|
self.layer = nn.Sequential(*blocks)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through the ResNet layer."""
|
|
return self.layer(x)
|
|
|
|
|
|
class MaxSigmoidAttnBlock(nn.Module):
|
|
"""Max Sigmoid attention block."""
|
|
|
|
def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False):
|
|
"""Initializes MaxSigmoidAttnBlock with specified arguments."""
|
|
super().__init__()
|
|
self.nh = nh
|
|
self.hc = c2 // nh
|
|
self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
|
|
self.gl = nn.Linear(gc, ec)
|
|
self.bias = nn.Parameter(torch.zeros(nh))
|
|
self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
|
|
self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0
|
|
|
|
def forward(self, x, guide):
|
|
"""Forward process."""
|
|
bs, _, h, w = x.shape
|
|
|
|
guide = self.gl(guide)
|
|
guide = guide.view(bs, -1, self.nh, self.hc)
|
|
embed = self.ec(x) if self.ec is not None else x
|
|
embed = embed.view(bs, self.nh, self.hc, h, w)
|
|
|
|
aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
|
|
aw = aw.max(dim=-1)[0]
|
|
aw = aw / (self.hc**0.5)
|
|
aw = aw + self.bias[None, :, None, None]
|
|
aw = aw.sigmoid() * self.scale
|
|
|
|
x = self.proj_conv(x)
|
|
x = x.view(bs, self.nh, -1, h, w)
|
|
x = x * aw.unsqueeze(2)
|
|
return x.view(bs, -1, h, w)
|
|
|
|
|
|
class C2fAttn(nn.Module):
|
|
"""C2f module with an additional attn module."""
|
|
|
|
def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5):
|
|
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
|
|
expansion.
|
|
"""
|
|
super().__init__()
|
|
self.c = int(c2 * e) # hidden channels
|
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
|
self.cv2 = Conv((3 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
|
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
|
|
self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)
|
|
|
|
def forward(self, x, guide):
|
|
"""Forward pass through C2f layer."""
|
|
y = list(self.cv1(x).chunk(2, 1))
|
|
y.extend(m(y[-1]) for m in self.m)
|
|
y.append(self.attn(y[-1], guide))
|
|
return self.cv2(torch.cat(y, 1))
|
|
|
|
def forward_split(self, x, guide):
|
|
"""Forward pass using split() instead of chunk()."""
|
|
y = list(self.cv1(x).split((self.c, self.c), 1))
|
|
y.extend(m(y[-1]) for m in self.m)
|
|
y.append(self.attn(y[-1], guide))
|
|
return self.cv2(torch.cat(y, 1))
|
|
|
|
|
|
class ImagePoolingAttn(nn.Module):
|
|
"""ImagePoolingAttn: Enhance the text embeddings with image-aware information."""
|
|
|
|
def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False):
|
|
"""Initializes ImagePoolingAttn with specified arguments."""
|
|
super().__init__()
|
|
|
|
nf = len(ch)
|
|
self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
|
|
self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
|
|
self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
|
|
self.proj = nn.Linear(ec, ct)
|
|
self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
|
|
self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
|
|
self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
|
|
self.ec = ec
|
|
self.nh = nh
|
|
self.nf = nf
|
|
self.hc = ec // nh
|
|
self.k = k
|
|
|
|
def forward(self, x, text):
|
|
"""Executes attention mechanism on input tensor x and guide tensor."""
|
|
bs = x[0].shape[0]
|
|
assert len(x) == self.nf
|
|
num_patches = self.k**2
|
|
x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
|
|
x = torch.cat(x, dim=-1).transpose(1, 2)
|
|
q = self.query(text)
|
|
k = self.key(x)
|
|
v = self.value(x)
|
|
|
|
# q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
|
|
q = q.reshape(bs, -1, self.nh, self.hc)
|
|
k = k.reshape(bs, -1, self.nh, self.hc)
|
|
v = v.reshape(bs, -1, self.nh, self.hc)
|
|
|
|
aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
|
|
aw = aw / (self.hc**0.5)
|
|
aw = F.softmax(aw, dim=-1)
|
|
|
|
x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
|
|
x = self.proj(x.reshape(bs, -1, self.ec))
|
|
return x * self.scale + text
|
|
|
|
|
|
class ContrastiveHead(nn.Module):
|
|
"""Contrastive Head for YOLO-World compute the region-text scores according to the similarity between image and text
|
|
features.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""Initializes ContrastiveHead with specified region-text similarity parameters."""
|
|
super().__init__()
|
|
self.bias = nn.Parameter(torch.zeros([]))
|
|
self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())
|
|
|
|
def forward(self, x, w):
|
|
"""Forward function of contrastive learning."""
|
|
x = F.normalize(x, dim=1, p=2)
|
|
w = F.normalize(w, dim=-1, p=2)
|
|
x = torch.einsum("bchw,bkc->bkhw", x, w)
|
|
return x * self.logit_scale.exp() + self.bias
|
|
|
|
|
|
class BNContrastiveHead(nn.Module):
|
|
"""
|
|
Batch Norm Contrastive Head for YOLO-World using batch norm instead of l2-normalization.
|
|
|
|
Args:
|
|
embed_dims (int): Embed dimensions of text and image features.
|
|
norm_cfg (dict): Normalization parameters.
|
|
"""
|
|
|
|
def __init__(self, embed_dims: int):
|
|
"""Initialize ContrastiveHead with region-text similarity parameters."""
|
|
super().__init__()
|
|
self.norm = nn.BatchNorm2d(embed_dims)
|
|
self.bias = nn.Parameter(torch.zeros([]))
|
|
# use -1.0 is more stable
|
|
self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))
|
|
|
|
def forward(self, x, w):
|
|
"""Forward function of contrastive learning."""
|
|
x = self.norm(x)
|
|
w = F.normalize(w, dim=-1, p=2)
|
|
x = torch.einsum("bchw,bkc->bkhw", x, w)
|
|
return x * self.logit_scale.exp() + self.bias
|