You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.3 KiB
Python
67 lines
2.3 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
import copy
|
|
import paddle
|
|
|
|
__all__ = ["build_optimizer"]
|
|
|
|
|
|
def build_lr_scheduler(lr_config, epochs, step_each_epoch):
|
|
from . import learning_rate
|
|
|
|
lr_config.update({"epochs": epochs, "step_each_epoch": step_each_epoch})
|
|
lr_name = lr_config.pop("name", "Const")
|
|
lr = getattr(learning_rate, lr_name)(**lr_config)()
|
|
return lr
|
|
|
|
|
|
def build_optimizer(config, epochs, step_each_epoch, model):
|
|
from . import regularizer, optimizer
|
|
|
|
config = copy.deepcopy(config)
|
|
# step1 build lr
|
|
lr = build_lr_scheduler(config.pop("lr"), epochs, step_each_epoch)
|
|
|
|
# step2 build regularization
|
|
if "regularizer" in config and config["regularizer"] is not None:
|
|
reg_config = config.pop("regularizer")
|
|
reg_name = reg_config.pop("name")
|
|
if not hasattr(regularizer, reg_name):
|
|
reg_name += "Decay"
|
|
reg = getattr(regularizer, reg_name)(**reg_config)()
|
|
elif "weight_decay" in config:
|
|
reg = config.pop("weight_decay")
|
|
else:
|
|
reg = None
|
|
|
|
# step3 build optimizer
|
|
optim_name = config.pop("name")
|
|
if "clip_norm" in config:
|
|
clip_norm = config.pop("clip_norm")
|
|
grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
|
|
elif "clip_norm_global" in config:
|
|
clip_norm = config.pop("clip_norm_global")
|
|
grad_clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=clip_norm)
|
|
else:
|
|
grad_clip = None
|
|
optim = getattr(optimizer, optim_name)(
|
|
learning_rate=lr, weight_decay=reg, grad_clip=grad_clip, **config
|
|
)
|
|
return optim(model), lr
|