You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
5.5 KiB
Python
154 lines
5.5 KiB
Python
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import paddle
|
|
from paddle import ParamAttr
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
|
|
from ppocr.modeling.necks.rnn import (
|
|
Im2Seq,
|
|
EncoderWithRNN,
|
|
EncoderWithFC,
|
|
SequenceEncoder,
|
|
EncoderWithSVTR,
|
|
trunc_normal_,
|
|
zeros_,
|
|
)
|
|
from .rec_ctc_head import CTCHead
|
|
from .rec_sar_head import SARHead
|
|
from .rec_nrtr_head import Transformer
|
|
|
|
|
|
class FCTranspose(nn.Layer):
|
|
def __init__(self, in_channels, out_channels, only_transpose=False):
|
|
super().__init__()
|
|
self.only_transpose = only_transpose
|
|
if not self.only_transpose:
|
|
self.fc = nn.Linear(in_channels, out_channels, bias_attr=False)
|
|
|
|
def forward(self, x):
|
|
if self.only_transpose:
|
|
return x.transpose([0, 2, 1])
|
|
else:
|
|
return self.fc(x.transpose([0, 2, 1]))
|
|
|
|
|
|
class AddPos(nn.Layer):
|
|
def __init__(self, dim, w):
|
|
super().__init__()
|
|
self.dec_pos_embed = self.create_parameter(
|
|
shape=[1, w, dim], default_initializer=zeros_
|
|
)
|
|
self.add_parameter("dec_pos_embed", self.dec_pos_embed)
|
|
trunc_normal_(self.dec_pos_embed)
|
|
|
|
def forward(self, x):
|
|
x = x + self.dec_pos_embed[:, : x.shape[1], :]
|
|
return x
|
|
|
|
|
|
class MultiHead(nn.Layer):
|
|
def __init__(self, in_channels, out_channels_list, **kwargs):
|
|
super().__init__()
|
|
self.head_list = kwargs.pop("head_list")
|
|
self.use_pool = kwargs.get("use_pool", False)
|
|
self.use_pos = kwargs.get("use_pos", False)
|
|
self.in_channels = in_channels
|
|
if self.use_pool:
|
|
self.pool = nn.AvgPool2D(kernel_size=[3, 2], stride=[3, 2], padding=0)
|
|
self.gtc_head = "sar"
|
|
assert len(self.head_list) >= 2
|
|
for idx, head_name in enumerate(self.head_list):
|
|
name = list(head_name)[0]
|
|
if name == "SARHead":
|
|
# sar head
|
|
sar_args = self.head_list[idx][name]
|
|
self.sar_head = eval(name)(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels_list["SARLabelDecode"],
|
|
**sar_args,
|
|
)
|
|
elif name == "NRTRHead":
|
|
gtc_args = self.head_list[idx][name]
|
|
max_text_length = gtc_args.get("max_text_length", 25)
|
|
nrtr_dim = gtc_args.get("nrtr_dim", 256)
|
|
num_decoder_layers = gtc_args.get("num_decoder_layers", 4)
|
|
if self.use_pos:
|
|
self.before_gtc = nn.Sequential(
|
|
nn.Flatten(2),
|
|
FCTranspose(in_channels, nrtr_dim),
|
|
AddPos(nrtr_dim, 80),
|
|
)
|
|
else:
|
|
self.before_gtc = nn.Sequential(
|
|
nn.Flatten(2), FCTranspose(in_channels, nrtr_dim)
|
|
)
|
|
|
|
self.gtc_head = Transformer(
|
|
d_model=nrtr_dim,
|
|
nhead=nrtr_dim // 32,
|
|
num_encoder_layers=-1,
|
|
beam_size=-1,
|
|
num_decoder_layers=num_decoder_layers,
|
|
max_len=max_text_length,
|
|
dim_feedforward=nrtr_dim * 4,
|
|
out_channels=out_channels_list["NRTRLabelDecode"],
|
|
)
|
|
elif name == "CTCHead":
|
|
# ctc neck
|
|
self.encoder_reshape = Im2Seq(in_channels)
|
|
neck_args = self.head_list[idx][name]["Neck"]
|
|
encoder_type = neck_args.pop("name")
|
|
self.ctc_encoder = SequenceEncoder(
|
|
in_channels=in_channels, encoder_type=encoder_type, **neck_args
|
|
)
|
|
# ctc head
|
|
head_args = self.head_list[idx][name]["Head"]
|
|
self.ctc_head = eval(name)(
|
|
in_channels=self.ctc_encoder.out_channels,
|
|
out_channels=out_channels_list["CTCLabelDecode"],
|
|
**head_args,
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
"{} is not supported in MultiHead yet".format(name)
|
|
)
|
|
|
|
def forward(self, x, targets=None):
|
|
if self.use_pool:
|
|
x = self.pool(
|
|
x.reshape([0, 3, -1, self.in_channels]).transpose([0, 3, 1, 2])
|
|
)
|
|
ctc_encoder = self.ctc_encoder(x)
|
|
ctc_out = self.ctc_head(ctc_encoder, targets)
|
|
head_out = dict()
|
|
head_out["ctc"] = ctc_out
|
|
head_out["ctc_neck"] = ctc_encoder
|
|
# eval mode
|
|
if not self.training:
|
|
return ctc_out
|
|
if self.gtc_head == "sar":
|
|
sar_out = self.sar_head(x, targets[1:])
|
|
head_out["sar"] = sar_out
|
|
else:
|
|
gtc_out = self.gtc_head(self.before_gtc(x), targets[1:])
|
|
head_out["gtc"] = gtc_out
|
|
return head_out
|