You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

154 lines
5.5 KiB
Python

# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from ppocr.modeling.necks.rnn import (
Im2Seq,
EncoderWithRNN,
EncoderWithFC,
SequenceEncoder,
EncoderWithSVTR,
trunc_normal_,
zeros_,
)
from .rec_ctc_head import CTCHead
from .rec_sar_head import SARHead
from .rec_nrtr_head import Transformer
class FCTranspose(nn.Layer):
def __init__(self, in_channels, out_channels, only_transpose=False):
super().__init__()
self.only_transpose = only_transpose
if not self.only_transpose:
self.fc = nn.Linear(in_channels, out_channels, bias_attr=False)
def forward(self, x):
if self.only_transpose:
return x.transpose([0, 2, 1])
else:
return self.fc(x.transpose([0, 2, 1]))
class AddPos(nn.Layer):
def __init__(self, dim, w):
super().__init__()
self.dec_pos_embed = self.create_parameter(
shape=[1, w, dim], default_initializer=zeros_
)
self.add_parameter("dec_pos_embed", self.dec_pos_embed)
trunc_normal_(self.dec_pos_embed)
def forward(self, x):
x = x + self.dec_pos_embed[:, : x.shape[1], :]
return x
class MultiHead(nn.Layer):
def __init__(self, in_channels, out_channels_list, **kwargs):
super().__init__()
self.head_list = kwargs.pop("head_list")
self.use_pool = kwargs.get("use_pool", False)
self.use_pos = kwargs.get("use_pos", False)
self.in_channels = in_channels
if self.use_pool:
self.pool = nn.AvgPool2D(kernel_size=[3, 2], stride=[3, 2], padding=0)
self.gtc_head = "sar"
assert len(self.head_list) >= 2
for idx, head_name in enumerate(self.head_list):
name = list(head_name)[0]
if name == "SARHead":
# sar head
sar_args = self.head_list[idx][name]
self.sar_head = eval(name)(
in_channels=in_channels,
out_channels=out_channels_list["SARLabelDecode"],
**sar_args,
)
elif name == "NRTRHead":
gtc_args = self.head_list[idx][name]
max_text_length = gtc_args.get("max_text_length", 25)
nrtr_dim = gtc_args.get("nrtr_dim", 256)
num_decoder_layers = gtc_args.get("num_decoder_layers", 4)
if self.use_pos:
self.before_gtc = nn.Sequential(
nn.Flatten(2),
FCTranspose(in_channels, nrtr_dim),
AddPos(nrtr_dim, 80),
)
else:
self.before_gtc = nn.Sequential(
nn.Flatten(2), FCTranspose(in_channels, nrtr_dim)
)
self.gtc_head = Transformer(
d_model=nrtr_dim,
nhead=nrtr_dim // 32,
num_encoder_layers=-1,
beam_size=-1,
num_decoder_layers=num_decoder_layers,
max_len=max_text_length,
dim_feedforward=nrtr_dim * 4,
out_channels=out_channels_list["NRTRLabelDecode"],
)
elif name == "CTCHead":
# ctc neck
self.encoder_reshape = Im2Seq(in_channels)
neck_args = self.head_list[idx][name]["Neck"]
encoder_type = neck_args.pop("name")
self.ctc_encoder = SequenceEncoder(
in_channels=in_channels, encoder_type=encoder_type, **neck_args
)
# ctc head
head_args = self.head_list[idx][name]["Head"]
self.ctc_head = eval(name)(
in_channels=self.ctc_encoder.out_channels,
out_channels=out_channels_list["CTCLabelDecode"],
**head_args,
)
else:
raise NotImplementedError(
"{} is not supported in MultiHead yet".format(name)
)
def forward(self, x, targets=None):
if self.use_pool:
x = self.pool(
x.reshape([0, 3, -1, self.in_channels]).transpose([0, 3, 1, 2])
)
ctc_encoder = self.ctc_encoder(x)
ctc_out = self.ctc_head(ctc_encoder, targets)
head_out = dict()
head_out["ctc"] = ctc_out
head_out["ctc_neck"] = ctc_encoder
# eval mode
if not self.training:
return ctc_out
if self.gtc_head == "sar":
sar_out = self.sar_head(x, targets[1:])
head_out["sar"] = sar_out
else:
gtc_out = self.gtc_head(self.before_gtc(x), targets[1:])
head_out["gtc"] = gtc_out
return head_out