You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
70 lines
2.2 KiB
Python
70 lines
2.2 KiB
Python
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import paddle
|
|
from paddle import nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
|
|
import math
|
|
from paddle.nn.initializer import TruncatedNormal, Constant, Normal
|
|
|
|
ones_ = Constant(value=1.0)
|
|
zeros_ = Constant(value=0.0)
|
|
|
|
|
|
class CT_Head(nn.Layer):
|
|
def __init__(
|
|
self, in_channels, hidden_dim, num_classes, loss_kernel=None, loss_loc=None
|
|
):
|
|
super(CT_Head, self).__init__()
|
|
self.conv1 = nn.Conv2D(
|
|
in_channels, hidden_dim, kernel_size=3, stride=1, padding=1
|
|
)
|
|
self.bn1 = nn.BatchNorm2D(hidden_dim)
|
|
self.relu1 = nn.ReLU()
|
|
|
|
self.conv2 = nn.Conv2D(
|
|
hidden_dim, num_classes, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
for m in self.sublayers():
|
|
if isinstance(m, nn.Conv2D):
|
|
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
|
|
normal_ = Normal(mean=0.0, std=math.sqrt(2.0 / n))
|
|
normal_(m.weight)
|
|
elif isinstance(m, nn.BatchNorm2D):
|
|
zeros_(m.bias)
|
|
ones_(m.weight)
|
|
|
|
def _upsample(self, x, scale=1):
|
|
return F.upsample(x, scale_factor=scale, mode="bilinear")
|
|
|
|
def forward(self, f, targets=None):
|
|
out = self.conv1(f)
|
|
out = self.relu1(self.bn1(out))
|
|
out = self.conv2(out)
|
|
|
|
if self.training:
|
|
out = self._upsample(out, scale=4)
|
|
return {"maps": out}
|
|
else:
|
|
score = F.sigmoid(out[:, 0, :, :])
|
|
return {"maps": out, "score": score}
|