You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

116 lines
4.2 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import importlib
from paddle.jit import to_static
from paddle.static import InputSpec
from .base_model import BaseModel
from .distillation_model import DistillationModel
__all__ = ["build_model", "apply_to_static"]
def build_model(config):
config = copy.deepcopy(config)
if not "name" in config:
arch = BaseModel(config)
else:
name = config.pop("name")
mod = importlib.import_module(__name__)
arch = getattr(mod, name)(config)
return arch
def apply_to_static(model, config, logger):
if config["Global"].get("to_static", False) is not True:
return model
assert (
"d2s_train_image_shape" in config["Global"]
), "d2s_train_image_shape must be assigned for static training mode..."
supported_list = ["DB", "SVTR_LCNet", "TableMaster", "LayoutXLM", "SLANet", "SVTR"]
if config["Architecture"]["algorithm"] in ["Distillation"]:
algo = list(config["Architecture"]["Models"].values())[0]["algorithm"]
else:
algo = config["Architecture"]["algorithm"]
assert (
algo in supported_list
), f"algorithms that supports static training must in in {supported_list} but got {algo}"
specs = [
InputSpec([None] + config["Global"]["d2s_train_image_shape"], dtype="float32")
]
if algo == "SVTR_LCNet":
specs.append(
[
InputSpec([None, config["Global"]["max_text_length"]], dtype="int64"),
InputSpec([None, config["Global"]["max_text_length"]], dtype="int64"),
InputSpec([None], dtype="int64"),
InputSpec([None], dtype="float64"),
]
)
elif algo == "TableMaster":
specs.append(
[
InputSpec([None, config["Global"]["max_text_length"]], dtype="int64"),
InputSpec(
[None, config["Global"]["max_text_length"], 4], dtype="float32"
),
InputSpec(
[None, config["Global"]["max_text_length"], 1], dtype="float32"
),
InputSpec([None, 6], dtype="float32"),
]
)
elif algo == "LayoutXLM":
specs = [
[
InputSpec(shape=[None, 512], dtype="int64"), # input_ids
InputSpec(shape=[None, 512, 4], dtype="int64"), # bbox
InputSpec(shape=[None, 512], dtype="int64"), # attention_mask
InputSpec(shape=[None, 512], dtype="int64"), # token_type_ids
InputSpec(shape=[None, 3, 224, 224], dtype="float32"), # image
InputSpec(shape=[None, 512], dtype="int64"), # label
]
]
elif algo == "SLANet":
specs.append(
[
InputSpec(
[None, config["Global"]["max_text_length"] + 2], dtype="int64"
),
InputSpec(
[None, config["Global"]["max_text_length"] + 2, 4], dtype="float32"
),
InputSpec(
[None, config["Global"]["max_text_length"] + 2, 1], dtype="float32"
),
InputSpec([None], dtype="int64"),
InputSpec([None, 6], dtype="float64"),
]
)
elif algo == "SVTR":
specs.append(
[
InputSpec([None, config["Global"]["max_text_length"]], dtype="int64"),
InputSpec([None], dtype="int64"),
]
)
model = to_static(model, input_spec=specs)
logger.info("Successfully to apply @to_static with specs: {}".format(specs))
return model