You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

697 lines
26 KiB
Markdown

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
typora-copy-images-to: images
comments: true
---
# 快速构建卡证类OCR
## 1. 金融行业卡证识别应用
### 1.1 金融行业中的OCR相关技术
《“十四五”数字经济发展规划》指出2020年我国数字经济核心产业增加值占GDP比重达7.8随着数字经济迈向全面扩展到2025年该比例将提升至10
在过去数年的跨越发展与积累沉淀中,数字金融、金融科技已在对金融业的重塑与再造中充分印证了其自身价值。
以智能为目标,提升金融数字化水平,实现业务流程自动化,降低人力成本。
![](./images/8bb381f164c54ea9b4043cf66fc92ffdea8aaf851bab484fa6e19bd2f93f154f.jpeg)
### 1.2 金融行业中的卡证识别场景介绍
应用场景:身份证、银行卡、营业执照、驾驶证等。
应用难点:由于数据的采集来源多样,以及实际采集数据各种噪声:反光、褶皱、模糊、倾斜等各种问题干扰。
![](./images/981640e17d05487e961162f8576c9e11634ca157f79048d4bd9d3bc21722afe8-20240704185952731.jpeg)
### 1.3 OCR落地挑战
![](./images/a5973a8ddeff4bd7ac082f02dc4d0c79de21e721b41641cbb831f23c2cb8fce2.jpeg)
## 2. 卡证识别技术解析
![](./images/d7f96effc2434a3ca2d4144ff33c50282b830670c892487d8d7dec151921cce7.jpeg)
### 2.1 卡证分类模型
卡证分类基于PPLCNet
与其他轻量级模型相比在CPU环境下ImageNet数据集上的表现
![](./images/cbda3390cb994f98a3c8a9ba88c90c348497763f6c9f4b4797f7d63d84da5f63.jpeg)
![](./images/dedab7b7fd6543aa9e7f625132b24e3ba3f200e361fa468dac615f7814dfb98d.jpeg)
模型来自模型库PaddleClas它是一个图像识别和图像分类任务的工具集助力使用者训练出更好的视觉模型和应用落地。
### 2.2 卡证识别模型
检测DBNet 识别SVRT
![](./images/9a7a4e19edc24310b46620f2ee7430f918223b93d4f14a15a52973c096926bad.jpeg)
PPOCRv3在文本检测、识别进行了一系列改进优化在保证精度的同时提升预测效率
![](./images/6afdbb77e8db4aef9b169e4e94c5d90a9764cfab4f2c4c04aa9afdf4f54d7680.jpeg)
![](./images/c1a7d197847a4f168848c59b8e625d1d5e8066b778144395a8b9382bb85dc364.jpeg)
## 3. OCR技术拆解
### 3.1技术流程
![](./images/89ba046177864d8783ced6cb31ba92a66ca2169856a44ee59ac2bb18e44a6c4b.jpeg)
### 3.2 OCR技术拆解---卡证分类
#### 卡证分类:数据、模型准备
A 使用爬虫获取无标注数据将相同类别的放在同一文件夹下文件名从0开始命名。具体格式如下图所示。
卡证类数据建议每个类别数据量在500张以上
![](./images/6f875b6e695e4fe5aedf427beb0d4ce8064ad7cc33c44faaad59d3eb9732639d.jpeg)
B 一行命令生成标签文件
```bash linenums="1"
tree -r -i -f | grep -E "jpg|JPG|jpeg|JPEG|png|PNG|webp" | awk -F "/" '{print $0" "$2}' > train_list.txt
```
C [下载预训练模型](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/models/PP-LCNet.md)
#### 卡证分类---修改配置文件
配置文件主要修改三个部分:
- 全局参数:预训练模型路径/训练轮次/图像尺寸
- 模型结构:分类数
- 数据处理:训练/评估数据路径
![](./images/e0dc05039c7444c5ab1260ff550a408748df8d4cfe864223adf390e51058dbd5.jpeg)
#### 卡证分类---训练
指定配置文件启动训练:
```bash linenums="1"
!python /home/aistudio/work/PaddleClas/tools/train.py -c /home/aistudio/work/PaddleClas/ppcls/configs/PULC/text_image_orientation/PPLCNet_x1_0.yaml
```
![](./images/06af09bde845449ba0a676410f4daa1cdc3983ac95034bdbbafac3b7fd94042f.jpeg)
​注:日志中显示了训练结果和评估结果(训练时可以设置固定轮数评估一次)
### 3.2 OCR技术拆解---卡证识别
卡证识别(以身份证检测为例)
存在的困难及问题:
- 在自然场景下,由于各种拍摄设备以及光线、角度不同等影响导致实际得到的证件影像千差万别。
- 如何快速提取需要的关键信息
- 多行的文本信息,检测结果如何正确拼接
![](./images/4f8f5533a2914e0a821f4a639677843c32ec1f08a1b1488d94c0b8bfb6e72d2d.jpeg)
- OCR技术拆解---OCR工具库
PaddleOCR是一个丰富、领先且实用的OCR工具库助力开发者训练出更好的模型并应用落地
身份证识别:用现有的方法识别
![](./images/12d402e6a06d482a88f979e0ebdfb39f4d3fc8b80517499689ec607ddb04fbf3.jpeg)
#### 身份证识别:检测+分类
>
> 方法基于现有的dbnet检测模型加入分类方法。检测同时进行分类从一定程度上优化识别流程
![](./images/e1e798c87472477fa0bfca0da12bb0c180845a3e167a4761b0d26ff4330a5ccb.jpeg)
![](./images/23a5a19c746441309864586e467f995ec8a551a3661640e493fc4d77520309cd.jpeg)
#### 数据标注
使用PaddleOCRLable进行快速标注
![](./images/a73180425fa14f919ce52d9bf70246c3995acea1831843cca6c17d871b8f5d95.jpeg)
- 修改PPOCRLabel.py将下图中的kie参数设置为True
![](./images/d445cf4d850e4063b9a7fc6a075c12204cf912ff23ec471fa2e268b661b3d693.jpeg)
- 数据标注踩坑分享
![](./images/89f42eccd600439fa9e28c97ccb663726e4e54ce3a854825b4c3b7d554ea21df.jpeg)
注:两者只有标注有差别,训练参数数据集都相同
## 4 . 项目实践
AIStudio项目链接[快速构建卡证类OCR](https://aistudio.baidu.com/aistudio/projectdetail/4459116)
### 4.1 环境准备
1拉取[paddleocr](https://github.com/PaddlePaddle/PaddleOCR)项目如果从github上拉取速度慢可以选择从gitee上获取。
```bash linenums="1"
!git clone https://github.com/PaddlePaddle/PaddleOCR.git -b release/2.6 /home/aistudio/work/
```
2获取并解压预训练模型如果要使用其他模型可以从模型库里自主选择合适模型。
```bash linenums="1"
!wget -P work/pre_trained/ https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
!tar -vxf /home/aistudio/work/pre_trained/ch_PP-OCRv3_det_distill_train.tar -C /home/aistudio/work/pre_trained
```
3安装必要依赖
```bash linenums="1"
!pip install -r /home/aistudio/work/requirements.txt
```
### 4.2 配置文件修改
修改配置文件 `work/configs/det/detmv3db.yml`
具体修改说明如下:
![](./images/fcdf517af5a6466294d72db7450209378d8efd9b77764e329d3f2aff3579a20c.jpeg)
在上述的配置文件的Global变量中需要添加以下两个参数
- label_list 为标签表
- num_classes 为分类数
​上述两个参数根据实际的情况配置即可
![](./images/0b056be24f374812b61abf43305774767ae122c8479242f98aa0799b7bfc81d4.jpeg)
其中lable_list内容如下例所示***建议第一个参数设置为 background不要设置为实际要提取的关键信息种类***
![](./images/9fc78bbcdf754898b9b2c7f000ddf562afac786482ab4f2ab063e2242faa542a.jpeg)
配置文件中的其他设置说明
![](./images/c7fc5e631dd44bc8b714630f4e49d9155a831d9e56c64e2482ded87081d0db22.jpeg)
![](./images/8d1022ac25d9474daa4fb236235bd58760039d58ad46414f841559d68e0d057f.jpeg)
![](./images/ee927ad9ebd442bb96f163a7ebbf4bc95e6bedee97324a51887cf82de0851fd3.jpeg)
### 4.3 代码修改
#### 4.3.1 数据读取
修改 PaddleOCR/ppocr/data/imaug/label_ops.py中的DetLabelEncode
```python linenums="1"
class DetLabelEncode(object):
# 修改检测标签的编码处新增了参数分类数num_classes重写初始化方法以及分类标签的读取
def __init__(self, label_list, num_classes=8, **kwargs):
self.num_classes = num_classes
self.label_list = []
if label_list:
if isinstance(label_list, str):
with open(label_list, 'r+', encoding='utf-8') as f:
for line in f.readlines():
self.label_list.append(line.replace("\n", ""))
else:
self.label_list = label_list
else:
assert ' please check label_list whether it is none or config is right'
if num_classes != len(self.label_list): # 校验分类数和标签的一致性
assert 'label_list length is not equal to the num_classes'
def __call__(self, data):
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags, classes = [], [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['key_cls'] # 此处将kie中的参数作为分类读取
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
if self.num_classes > 1:
classes.append(-2)
else:
txt_tags.append(False)
if self.num_classes > 1: # 将KIE内容的key标签作为分类标签使用
classes.append(int(self.label_list.index(txt)))
if len(boxes) == 0:
return None
boxes = self.expand_points_num(boxes)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool_)
classes = classes
data['polys'] = boxes
data['texts'] = txts
data['ignore_tags'] = txt_tags
if self.num_classes > 1:
data['classes'] = classes
return data
```
修改P`addleOCR/ppocr/data/imaug/make_shrink_map.py`中的MakeShrinkMap类。这里需要注意的是如果我们设置的label_list中的第一个参数为要检测的信息那么会得到如下的mask,
举例说明:
这是检测的mask图图中有四个mask那么实际对应的分类应该是4类
![](./images/42d2188d3d6b498880952e12c3ceae1efabf135f8d9f4c31823f09ebe02ba9d2.jpeg)
label_list中第一个为关键分类则得到的分类Mask实际如下与上图相比少了一个box
![](./images/864604967256461aa7c5d32cd240645e9f4c70af773341d5911f22d5a3e87b5f.jpeg)
```python linenums="1"
class MakeShrinkMap(object):
r'''
Making binary mask from detection data with ICDAR format.
Typically following the process of class `MakeICDARData`.
'''
def __init__(self, min_text_size=8, shrink_ratio=0.4, num_classes=8, **kwargs):
self.min_text_size = min_text_size
self.shrink_ratio = shrink_ratio
self.num_classes = num_classes # 添加了分类
def __call__(self, data):
image = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
if self.num_classes > 1:
classes = data['classes']
h, w = image.shape[:2]
text_polys, ignore_tags = self.validate_polygons(text_polys,
ignore_tags, h, w)
gt = np.zeros((h, w), dtype=np.float32)
mask = np.ones((h, w), dtype=np.float32)
gt_class = np.zeros((h, w), dtype=np.float32) # 新增分类
for i in range(len(text_polys)):
polygon = text_polys[i]
height = max(polygon[:, 1]) - min(polygon[:, 1])
width = max(polygon[:, 0]) - min(polygon[:, 0])
if ignore_tags[i] or min(height, width) < self.min_text_size:
cv2.fillPoly(mask,
polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
else:
polygon_shape = Polygon(polygon)
subject = [tuple(l) for l in polygon]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND,
pyclipper.ET_CLOSEDPOLYGON)
shrinked = []
# Increase the shrink ratio every time we get multiple polygon returned back
possible_ratios = np.arange(self.shrink_ratio, 1,
self.shrink_ratio)
np.append(possible_ratios, 1)
for ratio in possible_ratios:
distance = polygon_shape.area * (
1 - np.power(ratio, 2)) / polygon_shape.length
shrinked = padding.Execute(-distance)
if len(shrinked) == 1:
break
if shrinked == []:
cv2.fillPoly(mask,
polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
continue
for each_shirnk in shrinked:
shirnk = np.array(each_shirnk).reshape(-1, 2)
cv2.fillPoly(gt, [shirnk.astype(np.int32)], 1)
if self.num_classes > 1: # 绘制分类的mask
cv2.fillPoly(gt_class, polygon.astype(np.int32)[np.newaxis, :, :], classes[i])
data['shrink_map'] = gt
if self.num_classes > 1:
data['class_mask'] = gt_class
data['shrink_mask'] = mask
return data
```
由于在训练数据中会对数据进行resize设置yml中的操作为`EastRandomCropData`,所以需要修改`PaddleOCR/ppocr/data/imaug/random_crop_data.py`中的`EastRandomCropData`
```python linenums="1"
class EastRandomCropData(object):
def __init__(self,
size=(640, 640),
max_tries=10,
min_crop_side_ratio=0.1,
keep_ratio=True,
num_classes=8,
**kwargs):
self.size = size
self.max_tries = max_tries
self.min_crop_side_ratio = min_crop_side_ratio
self.keep_ratio = keep_ratio
self.num_classes = num_classes
def __call__(self, data):
img = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
texts = data['texts']
if self.num_classes > 1:
classes = data['classes']
all_care_polys = [
text_polys[i] for i, tag in enumerate(ignore_tags) if not tag
]
# 计算crop区域
crop_x, crop_y, crop_w, crop_h = crop_area(
img, all_care_polys, self.min_crop_side_ratio, self.max_tries)
# crop 图片 保持比例填充
scale_w = self.size[0] / crop_w
scale_h = self.size[1] / crop_h
scale = min(scale_w, scale_h)
h = int(crop_h * scale)
w = int(crop_w * scale)
if self.keep_ratio:
padimg = np.zeros((self.size[1], self.size[0], img.shape[2]),
img.dtype)
padimg[:h, :w] = cv2.resize(
img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h))
img = padimg
else:
img = cv2.resize(
img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w],
tuple(self.size))
# crop 文本框
text_polys_crop = []
ignore_tags_crop = []
texts_crop = []
classes_crop = []
for poly, text, tag,class_index in zip(text_polys, texts, ignore_tags,classes):
poly = ((poly - (crop_x, crop_y)) * scale).tolist()
if not is_poly_outside_rect(poly, 0, 0, w, h):
text_polys_crop.append(poly)
ignore_tags_crop.append(tag)
texts_crop.append(text)
if self.num_classes > 1:
classes_crop.append(class_index)
data['image'] = img
data['polys'] = np.array(text_polys_crop)
data['ignore_tags'] = ignore_tags_crop
data['texts'] = texts_crop
if self.num_classes > 1:
data['classes'] = classes_crop
return data
```
#### 4.3.2 head修改
主要修改`ppocr/modeling/heads/det_db_head.py`将Head类中的最后一层的输出修改为实际的分类数同时在DBHead中新增分类的head。
![](./images/0e25da2ccded4af19e95c85c3d3287ab4d53e31a4eed4607b6a4cb637c43f6d3.jpeg)
#### 4.3.3 修改loss
修改`PaddleOCR/ppocr/losses/det_db_loss.py`中的DBLoss类分类采用交叉熵损失函数进行计算。
![](./images/dc10a070018d4d27946c26ec24a2a85bc3f16422f4964f72a9b63c6170d954e1.jpeg)
#### 4.3.4 后处理
由于涉及到eval以及后续推理能否正常使用我们需要修改后处理的相关代码修改位置`PaddleOCR/ppocr/postprocess/db_postprocess.py`中的DBPostProcess类
```python linenums="1"
class DBPostProcess(object):
"""
The post process for Differentiable Binarization (DB).
"""
def __init__(self,
thresh=0.3,
box_thresh=0.7,
max_candidates=1000,
unclip_ratio=2.0,
use_dilation=False,
score_mode="fast",
**kwargs):
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
self.min_size = 3
self.score_mode = score_mode
assert score_mode in [
"slow", "fast"
], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
self.dilation_kernel = None if not use_dilation else np.array(
[[1, 1], [1, 1]])
def boxes_from_bitmap(self, pred, _bitmap, classes, dest_width, dest_height):
"""
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
"""
bitmap = _bitmap
height, width = bitmap.shape
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
if len(outs) == 3:
img, contours, _ = outs[0], outs[1], outs[2]
elif len(outs) == 2:
contours, _ = outs[0], outs[1]
num_contours = min(len(contours), self.max_candidates)
boxes = []
scores = []
class_indexes = []
class_scores = []
for index in range(num_contours):
contour = contours[index]
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
if self.score_mode == "fast":
score, class_index, class_score = self.box_score_fast(pred, points.reshape(-1, 2), classes)
else:
score, class_index, class_score = self.box_score_slow(pred, contour, classes)
if self.box_thresh > score:
continue
box = self.unclip(points).reshape(-1, 1, 2)
box, sside = self.get_mini_boxes(box)
if sside < self.min_size + 2:
continue
box = np.array(box)
box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes.append(box.astype(np.int16))
scores.append(score)
class_indexes.append(class_index)
class_scores.append(class_score)
if classes is None:
return np.array(boxes, dtype=np.int16), scores
else:
return np.array(boxes, dtype=np.int16), scores, class_indexes, class_scores
def unclip(self, box):
unclip_ratio = self.unclip_ratio
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box, min(bounding_box[1])
def box_score_fast(self, bitmap, _box, classes):
'''
box_score_fast: use bbox mean score as the mean score
'''
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int32), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int32), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int32), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int32), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
if classes is None:
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0], None, None
else:
k = 999
class_mask = np.full((ymax - ymin + 1, xmax - xmin + 1), k, dtype=np.int32)
cv2.fillPoly(class_mask, box.reshape(1, -1, 2).astype(np.int32), 0)
classes = classes[ymin:ymax + 1, xmin:xmax + 1]
new_classes = classes + class_mask
a = new_classes.reshape(-1)
b = np.where(a >= k)
classes = np.delete(a, b[0].tolist())
class_index = np.argmax(np.bincount(classes))
class_score = np.sum(classes == class_index) / len(classes)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0], class_index, class_score
def box_score_slow(self, bitmap, contour, classes):
"""
box_score_slow: use polyon mean score as the mean score
"""
h, w = bitmap.shape[:2]
contour = contour.copy()
contour = np.reshape(contour, (-1, 2))
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
contour[:, 0] = contour[:, 0] - xmin
contour[:, 1] = contour[:, 1] - ymin
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
if classes is None:
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0], None, None
else:
k = 999
class_mask = np.full((ymax - ymin + 1, xmax - xmin + 1), k, dtype=np.int32)
cv2.fillPoly(class_mask, contour.reshape(1, -1, 2).astype(np.int32), 0)
classes = classes[ymin:ymax + 1, xmin:xmax + 1]
new_classes = classes + class_mask
a = new_classes.reshape(-1)
b = np.where(a >= k)
classes = np.delete(a, b[0].tolist())
class_index = np.argmax(np.bincount(classes))
class_score = np.sum(classes == class_index) / len(classes)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0], class_index, class_score
def __call__(self, outs_dict, shape_list):
pred = outs_dict['maps']
if isinstance(pred, paddle.Tensor):
pred = pred.numpy()
pred = pred[:, 0, :, :]
segmentation = pred > self.thresh
if "classes" in outs_dict:
classes = outs_dict['classes']
if isinstance(classes, paddle.Tensor):
classes = classes.numpy()
classes = classes[:, 0, :, :]
else:
classes = None
boxes_batch = []
for batch_index in range(pred.shape[0]):
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
if self.dilation_kernel is not None:
mask = cv2.dilate(
np.array(segmentation[batch_index]).astype(np.uint8),
self.dilation_kernel)
else:
mask = segmentation[batch_index]
if classes is None:
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask, None,
src_w, src_h)
boxes_batch.append({'points': boxes})
else:
boxes, scores, class_indexes, class_scores = self.boxes_from_bitmap(pred[batch_index], mask,
classes[batch_index],
src_w, src_h)
boxes_batch.append({'points': boxes, "classes": class_indexes, "class_scores": class_scores})
return boxes_batch
```
### 4.4. 模型启动
在完成上述步骤后我们就可以正常启动训练
```bash linenums="1"
!python /home/aistudio/work/PaddleOCR/tools/train.py -c /home/aistudio/work/PaddleOCR/configs/det/det_mv3_db.yml
```
其他命令:
```bash linenums="1"
!python /home/aistudio/work/PaddleOCR/tools/eval.py -c /home/aistudio/work/PaddleOCR/configs/det/det_mv3_db.yml
!python /home/aistudio/work/PaddleOCR/tools/infer_det.py -c /home/aistudio/work/PaddleOCR/configs/det/det_mv3_db.yml
```
模型推理
```bash linenums="1"
!python /home/aistudio/work/PaddleOCR/tools/infer/predict_det.py --image_dir="/home/aistudio/work/test_img/" --det_model_dir="/home/aistudio/work/PaddleOCR/output/infer"
```
## 5 总结
1. 分类+检测在一定程度上能够缩短用时,具体的模型选取要根据业务场景恰当选择。
2. 数据标注需要多次进行测试调整标注方法,一般进行检测模型微调,需要标注至少上百张。
3. 设置合理的batch_size以及resize大小同时注意lr设置。
## References
1. <https://github.com/PaddlePaddle/PaddleOCR>
2. <https://github.com/PaddlePaddle/PaddleClas>
3. <https://blog.csdn.net/YY007H/article/details/124491217>