|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
#
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
# You may obtain a copy of the License at
|
|
|
#
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
#
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
|
|
|
import fastdeploy as fd
|
|
|
import cv2
|
|
|
import os
|
|
|
|
|
|
|
|
|
def parse_arguments():
|
|
|
import argparse
|
|
|
import ast
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
parser.add_argument(
|
|
|
"--det_model", required=True, help="Path of Detection model of PPOCR."
|
|
|
)
|
|
|
parser.add_argument(
|
|
|
"--cls_model", required=True, help="Path of Classification model of PPOCR."
|
|
|
)
|
|
|
parser.add_argument(
|
|
|
"--rec_model", required=True, help="Path of Recognization model of PPOCR."
|
|
|
)
|
|
|
parser.add_argument(
|
|
|
"--rec_label_file", required=True, help="Path of Recognization model of PPOCR."
|
|
|
)
|
|
|
parser.add_argument(
|
|
|
"--image", type=str, required=True, help="Path of test image file."
|
|
|
)
|
|
|
parser.add_argument(
|
|
|
"--device",
|
|
|
type=str,
|
|
|
default="cpu",
|
|
|
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.",
|
|
|
)
|
|
|
parser.add_argument(
|
|
|
"--cpu_thread_num",
|
|
|
type=int,
|
|
|
default=9,
|
|
|
help="Number of threads while inference on CPU.",
|
|
|
)
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
|
def build_option(args):
|
|
|
det_option = fd.RuntimeOption()
|
|
|
cls_option = fd.RuntimeOption()
|
|
|
rec_option = fd.RuntimeOption()
|
|
|
if args.device == "npu":
|
|
|
det_option.use_rknpu2()
|
|
|
cls_option.use_rknpu2()
|
|
|
rec_option.use_rknpu2()
|
|
|
|
|
|
return det_option, cls_option, rec_option
|
|
|
|
|
|
|
|
|
def build_format(args):
|
|
|
det_format = fd.ModelFormat.ONNX
|
|
|
cls_format = fd.ModelFormat.ONNX
|
|
|
rec_format = fd.ModelFormat.ONNX
|
|
|
if args.device == "npu":
|
|
|
det_format = fd.ModelFormat.RKNN
|
|
|
cls_format = fd.ModelFormat.RKNN
|
|
|
rec_format = fd.ModelFormat.RKNN
|
|
|
|
|
|
return det_format, cls_format, rec_format
|
|
|
|
|
|
|
|
|
args = parse_arguments()
|
|
|
|
|
|
# Detection模型, 检测文字框
|
|
|
det_model_file = args.det_model
|
|
|
det_params_file = ""
|
|
|
# Classification模型,方向分类,可选
|
|
|
cls_model_file = args.cls_model
|
|
|
cls_params_file = ""
|
|
|
# Recognition模型,文字识别模型
|
|
|
rec_model_file = args.rec_model
|
|
|
rec_params_file = ""
|
|
|
rec_label_file = args.rec_label_file
|
|
|
|
|
|
det_option, cls_option, rec_option = build_option(args)
|
|
|
det_format, cls_format, rec_format = build_format(args)
|
|
|
|
|
|
det_model = fd.vision.ocr.DBDetector(
|
|
|
det_model_file, det_params_file, runtime_option=det_option, model_format=det_format
|
|
|
)
|
|
|
|
|
|
cls_model = fd.vision.ocr.Classifier(
|
|
|
cls_model_file, cls_params_file, runtime_option=cls_option, model_format=cls_format
|
|
|
)
|
|
|
|
|
|
rec_model = fd.vision.ocr.Recognizer(
|
|
|
rec_model_file,
|
|
|
rec_params_file,
|
|
|
rec_label_file,
|
|
|
runtime_option=rec_option,
|
|
|
model_format=rec_format,
|
|
|
)
|
|
|
|
|
|
# Det,Rec模型启用静态shape推理
|
|
|
det_model.preprocessor.static_shape_infer = True
|
|
|
rec_model.preprocessor.static_shape_infer = True
|
|
|
|
|
|
if args.device == "npu":
|
|
|
det_model.preprocessor.disable_normalize()
|
|
|
det_model.preprocessor.disable_permute()
|
|
|
cls_model.preprocessor.disable_normalize()
|
|
|
cls_model.preprocessor.disable_permute()
|
|
|
rec_model.preprocessor.disable_normalize()
|
|
|
rec_model.preprocessor.disable_permute()
|
|
|
|
|
|
# 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
|
|
|
ppocr_v3 = fd.vision.ocr.PPOCRv3(
|
|
|
det_model=det_model, cls_model=cls_model, rec_model=rec_model
|
|
|
)
|
|
|
|
|
|
# Cls模型和Rec模型的batch size 必须设置为1, 开启静态shape推理
|
|
|
ppocr_v3.cls_batch_size = 1
|
|
|
ppocr_v3.rec_batch_size = 1
|
|
|
|
|
|
# 预测图片准备
|
|
|
im = cv2.imread(args.image)
|
|
|
|
|
|
# 预测并打印结果
|
|
|
result = ppocr_v3.predict(im)
|
|
|
|
|
|
print(result)
|
|
|
|
|
|
# 可视化结果
|
|
|
vis_im = fd.vision.vis_ppocr(im, result)
|
|
|
cv2.imwrite("visualized_result.jpg", vis_im)
|
|
|
print("Visualized result save in ./visualized_result.jpg")
|