You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

114 lines
3.5 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--det_model", required=True, help="Path of Detection model of PPOCR."
)
parser.add_argument(
"--cls_model", required=True, help="Path of Classification model of PPOCR."
)
parser.add_argument(
"--rec_model", required=True, help="Path of Recognization model of PPOCR."
)
parser.add_argument(
"--rec_label_file", required=True, help="Path of Recognization model of PPOCR."
)
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file."
)
parser.add_argument(
"--cls_bs",
type=int,
default=1,
help="Classification model inference batch size.",
)
parser.add_argument(
"--rec_bs", type=int, default=6, help="Recognition model inference batch size"
)
return parser.parse_args()
def build_option(args):
det_option = fd.RuntimeOption()
cls_option = fd.RuntimeOption()
rec_option = fd.RuntimeOption()
det_option.use_kunlunxin()
cls_option.use_kunlunxin()
rec_option.use_kunlunxin()
return det_option, cls_option, rec_option
args = parse_arguments()
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file
det_option, cls_option, rec_option = build_option(args)
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option
)
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option
)
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option
)
# Create PP-OCRv3, if cls_model is not needed,
# just set cls_model=None .
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model
)
# Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity.
# When inference batch size is set to -1, it means that the inference batch size
# of the cls and rec models will be the same as the number of boxes detected by the det model.
ppocr_v3.cls_batch_size = args.cls_bs
ppocr_v3.rec_batch_size = args.rec_bs
# Prepare image.
im = cv2.imread(args.image)
# Print the results.
result = ppocr_v3.predict(im)
print(result)
# Visuliaze the output.
vis_im = fd.vision.vis_ppocr(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")