You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

141 lines
4.0 KiB
Python

import numpy as np
import paddle
import os
import cv2
import glob
def transform(data, ops=None):
"""transform"""
if ops is None:
ops = []
for op in ops:
data = op(data)
if data is None:
return None
return data
def create_operators(op_param_list, global_config=None):
"""
create operators based on the config
Args:
params(list): a dict list, used to create some operators
"""
assert isinstance(op_param_list, list), "operator config should be a list"
ops = []
for operator in op_param_list:
assert isinstance(operator, dict) and len(operator) == 1, "yaml format error"
op_name = list(operator)[0]
param = {} if operator[op_name] is None else operator[op_name]
if global_config is not None:
param.update(global_config)
op = eval(op_name)(**param)
ops.append(op)
return ops
class DecodeImage(object):
"""decode image"""
def __init__(self, img_mode="RGB", channel_first=False, **kwargs):
self.img_mode = img_mode
self.channel_first = channel_first
def __call__(self, data):
img = data["image"]
if six.PY2:
assert (
type(img) is str and len(img) > 0
), "invalid input 'Crop_img' in DecodeImage"
else:
assert (
type(img) is bytes and len(img) > 0
), "invalid input 'Crop_img' in DecodeImage"
img = np.frombuffer(img, dtype="uint8")
img = cv2.imdecode(img, 1)
if img is None:
return None
if self.img_mode == "GRAY":
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif self.img_mode == "RGB":
assert img.shape[2] == 3, "invalid shape of image[%s]" % (img.shape)
img = img[:, :, ::-1]
if self.channel_first:
img = img.transpose((2, 0, 1))
data["image"] = img
data["src_image"] = img
return data
class NormalizeImage(object):
"""normalize image such as substract mean, divide std"""
def __init__(self, scale=None, mean=None, std=None, order="chw", **kwargs):
if isinstance(scale, str):
scale = eval(scale)
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]
shape = (3, 1, 1) if order == "chw" else (1, 1, 3)
self.mean = np.array(mean).reshape(shape).astype("float32")
self.std = np.array(std).reshape(shape).astype("float32")
def __call__(self, data):
img = data["image"]
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
assert isinstance(img, np.ndarray), "invalid input 'Crop_img' in NormalizeImage"
data["image"] = (img.astype("float32") * self.scale - self.mean) / self.std
return data
class ToCHWImage(object):
"""convert hwc image to chw image"""
def __init__(self, **kwargs):
pass
def __call__(self, data):
img = data["image"]
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
data["image"] = img.transpose((2, 0, 1))
src_img = data["src_image"]
from PIL import Image
if isinstance(img, Image.Image):
src_img = np.array(src_img)
data["src_image"] = img.transpose((2, 0, 1))
return data
class SimpleDataset(nn.Dataset):
def __init__(self, config, mode, logger, seed=None):
self.logger = logger
self.mode = mode.lower()
data_dir = config["Train"]["data_dir"]
imgs_list = self.get_image_list(data_dir)
self.ops = create_operators(cfg["transforms"], None)
def get_image_list(self, img_dir):
imgs = glob.glob(os.path.join(img_dir, "*.png"))
if len(imgs) == 0:
raise ValueError(f"not any images founded in {img_dir}")
return imgs
def __getitem__(self, idx):
return None