You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

138 lines
4.7 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, "..", "..", ".."))
sys.path.append(os.path.join(__dir__, "..", "..", "..", "tools"))
import paddle
from ppocr.data import build_dataloader, set_signal_handlers
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import load_model
import tools.program as program
def main(config, device, logger, vdl_writer):
global_config = config["Global"]
# build dataloader
set_signal_handlers()
valid_dataloader = build_dataloader(config, "Eval", device, logger)
# build post process
post_process_class = build_post_process(config["PostProcess"], global_config)
# build model
# for rec algorithm
if hasattr(post_process_class, "character"):
char_num = len(getattr(post_process_class, "character"))
config["Architecture"]["Head"]["out_channels"] = char_num
model = build_model(config["Architecture"])
if config["Architecture"]["model_type"] == "det":
input_shape = [1, 3, 640, 640]
elif config["Architecture"]["model_type"] == "rec":
input_shape = [1, 3, 32, 320]
flops = paddle.flops(model, input_shape)
logger.info("FLOPs before pruning: {}".format(flops))
from paddleslim.dygraph import FPGMFilterPruner
model.train()
pruner = FPGMFilterPruner(model, input_shape)
# build metric
eval_class = build_metric(config["Metric"])
def eval_fn():
metric = program.eval(model, valid_dataloader, post_process_class, eval_class)
if config["Architecture"]["model_type"] == "det":
main_indicator = "hmean"
else:
main_indicator = "acc"
logger.info("metric[{}]: {}".format(main_indicator, metric[main_indicator]))
return metric[main_indicator]
params_sensitive = pruner.sensitive(
eval_func=eval_fn,
sen_file="./sen.pickle",
skip_vars=["conv2d_57.w_0", "conv2d_transpose_2.w_0", "conv2d_transpose_3.w_0"],
)
logger.info(
"The sensitivity analysis results of model parameters saved in sen.pickle"
)
# calculate pruned params's ratio
params_sensitive = pruner._get_ratios_by_loss(params_sensitive, loss=0.02)
for key in params_sensitive.keys():
logger.info("{}, {}".format(key, params_sensitive[key]))
plan = pruner.prune_vars(params_sensitive, [0])
flops = paddle.flops(model, input_shape)
logger.info("FLOPs after pruning: {}".format(flops))
# load pretrain model
load_model(config, model)
metric = program.eval(model, valid_dataloader, post_process_class, eval_class)
if config["Architecture"]["model_type"] == "det":
main_indicator = "hmean"
else:
main_indicator = "acc"
logger.info("metric['']: {}".format(main_indicator, metric[main_indicator]))
# start export model
from paddle.jit import to_static
infer_shape = [3, -1, -1]
if config["Architecture"]["model_type"] == "rec":
infer_shape = [3, 32, -1] # for rec model, H must be 32
if (
"Transform" in config["Architecture"]
and config["Architecture"]["Transform"] is not None
and config["Architecture"]["Transform"]["name"] == "TPS"
):
logger.info(
"When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training"
)
infer_shape[-1] = 100
model = to_static(
model,
input_spec=[
paddle.static.InputSpec(shape=[None] + infer_shape, dtype="float32")
],
)
save_path = "{}/inference".format(config["Global"]["save_inference_dir"])
paddle.jit.save(model, save_path)
logger.info("inference model is saved to {}".format(save_path))
if __name__ == "__main__":
config, device, logger, vdl_writer = program.preprocess(is_train=True)
main(config, device, logger, vdl_writer)