You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
293 lines
9.7 KiB
Python
293 lines
9.7 KiB
Python
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import time
|
|
import os
|
|
import sys
|
|
import cv2
|
|
import numpy as np
|
|
import paddle
|
|
import logging
|
|
import numpy as np
|
|
import argparse
|
|
from tqdm import tqdm
|
|
import paddle
|
|
from paddleslim.common import load_config as load_slim_config
|
|
from paddleslim.common import get_logger
|
|
|
|
import sys
|
|
|
|
sys.path.append("../../../")
|
|
from ppocr.data import build_dataloader
|
|
from ppocr.postprocess import build_post_process
|
|
from ppocr.metrics import build_metric
|
|
|
|
from paddle.inference import create_predictor, PrecisionType
|
|
from paddle.inference import Config as PredictConfig
|
|
|
|
logger = get_logger(__name__, level=logging.INFO)
|
|
|
|
|
|
def find_images_with_bounding_size(dataset: paddle.io.Dataset):
|
|
max_length_index = -1
|
|
max_width_index = -1
|
|
min_length_index = -1
|
|
min_width_index = -1
|
|
|
|
max_length = float("-inf")
|
|
max_width = float("-inf")
|
|
min_length = float("inf")
|
|
min_width = float("inf")
|
|
for idx, data in enumerate(dataset):
|
|
image = np.array(data[0])
|
|
h, w = image.shape[-2:]
|
|
if h > max_length:
|
|
max_length = h
|
|
max_length_index = idx
|
|
if w > max_width:
|
|
max_width = w
|
|
max_width_index = idx
|
|
if h < min_length:
|
|
min_length = h
|
|
min_length_index = idx
|
|
if w < min_width:
|
|
min_width = w
|
|
min_width_index = idx
|
|
print(f"Found max image length: {max_length}, index: {max_length_index}")
|
|
print(f"Found max image width: {max_width}, index: {max_width_index}")
|
|
print(f"Found min image length: {min_length}, index: {min_length_index}")
|
|
print(f"Found min image width: {min_width}, index: {min_width_index}")
|
|
return paddle.io.Subset(
|
|
dataset, [max_width_index, max_length_index, min_width_index, min_length_index]
|
|
)
|
|
|
|
|
|
def load_predictor(args):
|
|
"""
|
|
load predictor func
|
|
"""
|
|
rerun_flag = False
|
|
model_file = os.path.join(args.model_path, args.model_filename)
|
|
params_file = os.path.join(args.model_path, args.params_filename)
|
|
pred_cfg = PredictConfig(model_file, params_file)
|
|
pred_cfg.enable_memory_optim()
|
|
pred_cfg.switch_ir_optim(True)
|
|
if args.device == "GPU":
|
|
pred_cfg.enable_use_gpu(100, 0)
|
|
else:
|
|
pred_cfg.disable_gpu()
|
|
pred_cfg.set_cpu_math_library_num_threads(args.cpu_threads)
|
|
if args.use_mkldnn:
|
|
pred_cfg.enable_mkldnn()
|
|
if args.precision == "int8":
|
|
pred_cfg.enable_mkldnn_int8({"conv2d"})
|
|
|
|
if global_config["model_type"] == "rec":
|
|
# delete pass which influence the accuracy, please refer to https://github.com/PaddlePaddle/Paddle/issues/55290
|
|
pred_cfg.delete_pass("fc_mkldnn_pass")
|
|
pred_cfg.delete_pass("fc_act_mkldnn_fuse_pass")
|
|
|
|
if args.use_trt:
|
|
# To collect the dynamic shapes of inputs for TensorRT engine
|
|
dynamic_shape_file = os.path.join(args.model_path, "dynamic_shape.txt")
|
|
if os.path.exists(dynamic_shape_file):
|
|
pred_cfg.enable_tuned_tensorrt_dynamic_shape(dynamic_shape_file, True)
|
|
print("trt set dynamic shape done!")
|
|
precision_map = {
|
|
"fp16": PrecisionType.Half,
|
|
"fp32": PrecisionType.Float32,
|
|
"int8": PrecisionType.Int8,
|
|
}
|
|
if (
|
|
args.precision == "int8"
|
|
and "ppocrv4_det_server_qat_dist.yaml" in args.config_path
|
|
):
|
|
# Use the following settings only when the hardware is a Tesla V100. If you are using
|
|
# a RTX 3090, use the settings in the else branch.
|
|
pred_cfg.enable_tensorrt_engine(
|
|
workspace_size=1 << 30,
|
|
max_batch_size=1,
|
|
min_subgraph_size=30,
|
|
precision_mode=precision_map[args.precision],
|
|
use_static=True,
|
|
use_calib_mode=False,
|
|
)
|
|
pred_cfg.exp_disable_tensorrt_ops(["elementwise_add"])
|
|
else:
|
|
pred_cfg.enable_tensorrt_engine(
|
|
workspace_size=1 << 30,
|
|
max_batch_size=1,
|
|
min_subgraph_size=4,
|
|
precision_mode=precision_map[args.precision],
|
|
use_static=True,
|
|
use_calib_mode=False,
|
|
)
|
|
else:
|
|
# pred_cfg.disable_gpu()
|
|
# pred_cfg.set_cpu_math_library_num_threads(24)
|
|
pred_cfg.collect_shape_range_info(dynamic_shape_file)
|
|
print("Start collect dynamic shape...")
|
|
rerun_flag = True
|
|
|
|
predictor = create_predictor(pred_cfg)
|
|
return predictor, rerun_flag
|
|
|
|
|
|
def eval(args):
|
|
"""
|
|
eval mIoU func
|
|
"""
|
|
# DataLoader need run on cpu
|
|
paddle.set_device("cpu")
|
|
devices = paddle.device.get_device().split(":")[0]
|
|
|
|
val_loader = build_dataloader(all_config, "Eval", devices, logger)
|
|
post_process_class = build_post_process(all_config["PostProcess"], global_config)
|
|
eval_class = build_metric(all_config["Metric"])
|
|
model_type = global_config["model_type"]
|
|
|
|
predictor, rerun_flag = load_predictor(args)
|
|
|
|
if rerun_flag:
|
|
eval_dataset = find_images_with_bounding_size(val_loader.dataset)
|
|
batch_sampler = paddle.io.BatchSampler(
|
|
eval_dataset, batch_size=1, shuffle=False, drop_last=False
|
|
)
|
|
val_loader = paddle.io.DataLoader(
|
|
eval_dataset, batch_sampler=batch_sampler, num_workers=4, return_list=True
|
|
)
|
|
|
|
input_names = predictor.get_input_names()
|
|
input_handle = predictor.get_input_handle(input_names[0])
|
|
output_names = predictor.get_output_names()
|
|
output_handle = predictor.get_output_handle(output_names[0])
|
|
sample_nums = len(val_loader)
|
|
predict_time = 0.0
|
|
time_min = float("inf")
|
|
time_max = float("-inf")
|
|
print("Start evaluating ( total_iters: {}).".format(sample_nums))
|
|
|
|
for batch_id, batch in enumerate(val_loader):
|
|
images = np.array(batch[0])
|
|
|
|
batch_numpy = []
|
|
for item in batch:
|
|
batch_numpy.append(np.array(item))
|
|
|
|
# ori_shape = np.array(batch_numpy).shape[-2:]
|
|
input_handle.reshape(images.shape)
|
|
input_handle.copy_from_cpu(images)
|
|
start_time = time.time()
|
|
|
|
predictor.run()
|
|
preds = output_handle.copy_to_cpu()
|
|
|
|
end_time = time.time()
|
|
timed = end_time - start_time
|
|
time_min = min(time_min, timed)
|
|
time_max = max(time_max, timed)
|
|
predict_time += timed
|
|
|
|
if model_type == "det":
|
|
preds_map = {"maps": preds}
|
|
post_result = post_process_class(preds_map, batch_numpy[1])
|
|
eval_class(post_result, batch_numpy)
|
|
elif model_type == "rec":
|
|
post_result = post_process_class(preds, batch_numpy[1])
|
|
eval_class(post_result, batch_numpy)
|
|
|
|
if rerun_flag:
|
|
if batch_id == 3:
|
|
print(
|
|
"***** Collect dynamic shape done, Please rerun the program to get correct results. *****"
|
|
)
|
|
return
|
|
if batch_id % 100 == 0:
|
|
print("Eval iter:", batch_id)
|
|
sys.stdout.flush()
|
|
|
|
metric = eval_class.get_metric()
|
|
|
|
time_avg = predict_time / sample_nums
|
|
print(
|
|
"[Benchmark] Inference time(ms): min={}, max={}, avg={}".format(
|
|
round(time_min * 1000, 2),
|
|
round(time_max * 1000, 1),
|
|
round(time_avg * 1000, 1),
|
|
)
|
|
)
|
|
for k, v in metric.items():
|
|
print("{}:{}".format(k, v))
|
|
sys.stdout.flush()
|
|
|
|
|
|
def main():
|
|
global all_config, global_config
|
|
all_config = load_slim_config(args.config_path)
|
|
global_config = all_config["Global"]
|
|
eval(args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
paddle.enable_static()
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model_path", type=str, help="inference model filepath")
|
|
parser.add_argument(
|
|
"--config_path",
|
|
type=str,
|
|
default="./configs/ppocrv3_det_qat_dist.yaml",
|
|
help="path of compression strategy config.",
|
|
)
|
|
parser.add_argument(
|
|
"--model_filename",
|
|
type=str,
|
|
default="inference.pdmodel",
|
|
help="model file name",
|
|
)
|
|
parser.add_argument(
|
|
"--params_filename",
|
|
type=str,
|
|
default="inference.pdiparams",
|
|
help="params file name",
|
|
)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="GPU",
|
|
choices=["CPU", "GPU"],
|
|
help="Choose the device you want to run, it can be: CPU/GPU, default is GPU",
|
|
)
|
|
parser.add_argument(
|
|
"--precision",
|
|
type=str,
|
|
default="fp32",
|
|
choices=["fp32", "fp16", "int8"],
|
|
help="The precision of inference. It can be 'fp32', 'fp16' or 'int8'. Default is 'fp16'.",
|
|
)
|
|
parser.add_argument(
|
|
"--use_trt",
|
|
type=bool,
|
|
default=False,
|
|
help="Whether to use tensorrt engine or not.",
|
|
)
|
|
parser.add_argument(
|
|
"--use_mkldnn", type=bool, default=False, help="Whether use mkldnn or not."
|
|
)
|
|
parser.add_argument(
|
|
"--cpu_threads", type=int, default=10, help="Num of cpu threads."
|
|
)
|
|
args = parser.parse_args()
|
|
main()
|