You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
229 lines
8.1 KiB
Python
229 lines
8.1 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import fastdeploy as fd
|
|
import cv2
|
|
import os
|
|
|
|
|
|
def parse_arguments():
|
|
import argparse
|
|
import ast
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--det_model", required=True, help="Path of Detection model of PPOCR."
|
|
)
|
|
parser.add_argument(
|
|
"--cls_model", required=True, help="Path of Classification model of PPOCR."
|
|
)
|
|
parser.add_argument(
|
|
"--rec_model", required=True, help="Path of Recognization model of PPOCR."
|
|
)
|
|
parser.add_argument(
|
|
"--rec_label_file", required=True, help="Path of Recognization model of PPOCR."
|
|
)
|
|
parser.add_argument(
|
|
"--image", type=str, required=True, help="Path of test image file."
|
|
)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cpu",
|
|
help="Type of inference device, support 'cpu' or 'gpu'.",
|
|
)
|
|
parser.add_argument(
|
|
"--device_id",
|
|
type=int,
|
|
default=0,
|
|
help="Define which GPU card used to run model.",
|
|
)
|
|
parser.add_argument(
|
|
"--cls_bs",
|
|
type=int,
|
|
default=1,
|
|
help="Classification model inference batch size.",
|
|
)
|
|
parser.add_argument(
|
|
"--rec_bs", type=int, default=6, help="Recognition model inference batch size"
|
|
)
|
|
parser.add_argument(
|
|
"--backend",
|
|
type=str,
|
|
default="default",
|
|
help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def build_option(args):
|
|
det_option = fd.RuntimeOption()
|
|
cls_option = fd.RuntimeOption()
|
|
rec_option = fd.RuntimeOption()
|
|
|
|
if args.device.lower() == "gpu":
|
|
det_option.use_gpu(args.device_id)
|
|
cls_option.use_gpu(args.device_id)
|
|
rec_option.use_gpu(args.device_id)
|
|
|
|
if args.backend.lower() == "trt":
|
|
assert (
|
|
args.device.lower() == "gpu"
|
|
), "TensorRT backend require inference on device GPU."
|
|
det_option.use_trt_backend()
|
|
cls_option.use_trt_backend()
|
|
rec_option.use_trt_backend()
|
|
|
|
# If use TRT backend, the dynamic shape will be set as follow.
|
|
# We recommend that users set the length and height of the detection model to a multiple of 32.
|
|
# We also recommend that users set the Trt input shape as follow.
|
|
det_option.set_trt_input_shape(
|
|
"x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960]
|
|
)
|
|
cls_option.set_trt_input_shape(
|
|
"x", [1, 3, 48, 10], [args.cls_bs, 3, 48, 320], [args.cls_bs, 3, 48, 1024]
|
|
)
|
|
rec_option.set_trt_input_shape(
|
|
"x", [1, 3, 48, 10], [args.rec_bs, 3, 48, 320], [args.rec_bs, 3, 48, 2304]
|
|
)
|
|
|
|
# Users could save TRT cache file to disk as follow.
|
|
det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
|
|
cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
|
|
rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
|
|
|
|
elif args.backend.lower() == "pptrt":
|
|
assert (
|
|
args.device.lower() == "gpu"
|
|
), "Paddle-TensorRT backend require inference on device GPU."
|
|
det_option.use_paddle_infer_backend()
|
|
det_option.paddle_infer_option.collect_trt_shape = True
|
|
det_option.paddle_infer_option.enable_trt = True
|
|
|
|
cls_option.use_paddle_infer_backend()
|
|
cls_option.paddle_infer_option.collect_trt_shape = True
|
|
cls_option.paddle_infer_option.enable_trt = True
|
|
|
|
rec_option.use_paddle_infer_backend()
|
|
rec_option.paddle_infer_option.collect_trt_shape = True
|
|
rec_option.paddle_infer_option.enable_trt = True
|
|
|
|
# If use TRT backend, the dynamic shape will be set as follow.
|
|
# We recommend that users set the length and height of the detection model to a multiple of 32.
|
|
# We also recommend that users set the Trt input shape as follow.
|
|
det_option.set_trt_input_shape(
|
|
"x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960]
|
|
)
|
|
cls_option.set_trt_input_shape(
|
|
"x", [1, 3, 48, 10], [args.cls_bs, 3, 48, 320], [args.cls_bs, 3, 48, 1024]
|
|
)
|
|
rec_option.set_trt_input_shape(
|
|
"x", [1, 3, 48, 10], [args.rec_bs, 3, 48, 320], [args.rec_bs, 3, 48, 2304]
|
|
)
|
|
|
|
# Users could save TRT cache file to disk as follow.
|
|
det_option.set_trt_cache_file(args.det_model)
|
|
cls_option.set_trt_cache_file(args.cls_model)
|
|
rec_option.set_trt_cache_file(args.rec_model)
|
|
|
|
elif args.backend.lower() == "ort":
|
|
det_option.use_ort_backend()
|
|
cls_option.use_ort_backend()
|
|
rec_option.use_ort_backend()
|
|
|
|
elif args.backend.lower() == "paddle":
|
|
det_option.use_paddle_infer_backend()
|
|
cls_option.use_paddle_infer_backend()
|
|
rec_option.use_paddle_infer_backend()
|
|
|
|
elif args.backend.lower() == "openvino":
|
|
assert (
|
|
args.device.lower() == "cpu"
|
|
), "OpenVINO backend require inference on device CPU."
|
|
det_option.use_openvino_backend()
|
|
cls_option.use_openvino_backend()
|
|
rec_option.use_openvino_backend()
|
|
|
|
elif args.backend.lower() == "pplite":
|
|
assert (
|
|
args.device.lower() == "cpu"
|
|
), "Paddle Lite backend require inference on device CPU."
|
|
det_option.use_lite_backend()
|
|
cls_option.use_lite_backend()
|
|
rec_option.use_lite_backend()
|
|
|
|
return det_option, cls_option, rec_option
|
|
|
|
|
|
args = parse_arguments()
|
|
|
|
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
|
|
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
|
|
|
|
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
|
|
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
|
|
|
|
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
|
|
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
|
|
rec_label_file = args.rec_label_file
|
|
|
|
det_option, cls_option, rec_option = build_option(args)
|
|
|
|
det_model = fd.vision.ocr.DBDetector(
|
|
det_model_file, det_params_file, runtime_option=det_option
|
|
)
|
|
|
|
cls_model = fd.vision.ocr.Classifier(
|
|
cls_model_file, cls_params_file, runtime_option=cls_option
|
|
)
|
|
|
|
rec_model = fd.vision.ocr.Recognizer(
|
|
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option
|
|
)
|
|
|
|
# Parameters settings for pre and post processing of Det/Cls/Rec Models.
|
|
# All parameters are set to default values.
|
|
det_model.preprocessor.max_side_len = 960
|
|
det_model.postprocessor.det_db_thresh = 0.3
|
|
det_model.postprocessor.det_db_box_thresh = 0.6
|
|
det_model.postprocessor.det_db_unclip_ratio = 1.5
|
|
det_model.postprocessor.det_db_score_mode = "slow"
|
|
det_model.postprocessor.use_dilation = False
|
|
cls_model.postprocessor.cls_thresh = 0.9
|
|
|
|
# Create PP-OCRv3, if cls_model is not needed, just set cls_model=None .
|
|
ppocr_v3 = fd.vision.ocr.PPOCRv3(
|
|
det_model=det_model, cls_model=cls_model, rec_model=rec_model
|
|
)
|
|
|
|
# Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity.
|
|
# When inference batch size is set to -1, it means that the inference batch size
|
|
# of the cls and rec models will be the same as the number of boxes detected by the det model.
|
|
ppocr_v3.cls_batch_size = args.cls_bs
|
|
ppocr_v3.rec_batch_size = args.rec_bs
|
|
|
|
# Read the input image
|
|
im = cv2.imread(args.image)
|
|
|
|
# Predict and reutrn the results
|
|
result = ppocr_v3.predict(im)
|
|
|
|
print(result)
|
|
|
|
# Visuliaze the results.
|
|
vis_im = fd.vision.vis_ppocr(im, result)
|
|
cv2.imwrite("visualized_result.jpg", vis_im)
|
|
print("Visualized result save in ./visualized_result.jpg")
|