You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

73 lines
2.8 KiB
Python

from paddle.optimizer import lr
import logging
__all__ = ["Polynomial"]
class Polynomial(object):
"""
Polynomial learning rate decay
Args:
learning_rate (float): The initial learning rate. It is a python float number.
epochs(int): The decay epoch size. It determines the decay cycle, when by_epoch is set to true, it will change to epochs=epochs*step_each_epoch.
step_each_epoch: all steps in each epoch.
end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
power(float, optional): Power of polynomial. Default: 1.0.
warmup_epoch(int): The epoch numbers for LinearWarmup. Default: 0, , when by_epoch is set to true, it will change to warmup_epoch=warmup_epoch*step_each_epoch.
warmup_start_lr(float): Initial learning rate of warm up. Default: 0.0.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
by_epoch: Whether the set parameter is based on epoch or iter, when set to true,, epochs and warmup_epoch will be automatically multiplied by step_each_epoch. Default: True
"""
def __init__(
self,
learning_rate,
epochs,
step_each_epoch,
end_lr=0.0,
power=1.0,
warmup_epoch=0,
warmup_start_lr=0.0,
last_epoch=-1,
by_epoch=True,
**kwargs,
):
super().__init__()
if warmup_epoch >= epochs:
msg = f'When using warm up, the value of "epochs" must be greater than value of "Optimizer.lr.warmup_epoch". The value of "Optimizer.lr.warmup_epoch" has been set to {epochs}.'
logging.warning(msg)
warmup_epoch = epochs
self.learning_rate = learning_rate
self.epochs = epochs
self.end_lr = end_lr
self.power = power
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch
self.warmup_start_lr = warmup_start_lr
if by_epoch:
self.epochs *= step_each_epoch
self.warmup_epoch = int(self.warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = (
lr.PolynomialDecay(
learning_rate=self.learning_rate,
decay_steps=self.epochs,
end_lr=self.end_lr,
power=self.power,
last_epoch=self.last_epoch,
)
if self.epochs > 0
else self.learning_rate
)
if self.warmup_epoch > 0:
learning_rate = lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=self.warmup_start_lr,
end_lr=self.learning_rate,
last_epoch=self.last_epoch,
)
return learning_rate