You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
349 lines
10 KiB
Python
349 lines
10 KiB
Python
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
This code is refer from:
|
|
https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.5/ppcls/arch/backbone/model_zoo/vision_transformer.py
|
|
"""
|
|
|
|
from collections.abc import Callable
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn as nn
|
|
from paddle.nn.initializer import TruncatedNormal, Constant, Normal
|
|
|
|
|
|
trunc_normal_ = TruncatedNormal(std=0.02)
|
|
normal_ = Normal
|
|
zeros_ = Constant(value=0.0)
|
|
ones_ = Constant(value=1.0)
|
|
|
|
|
|
def to_2tuple(x):
|
|
return tuple([x] * 2)
|
|
|
|
|
|
def drop_path(x, drop_prob=0.0, training=False):
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
|
|
"""
|
|
if drop_prob == 0.0 or not training:
|
|
return x
|
|
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype)
|
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
|
random_tensor = keep_prob + paddle.rand(shape).astype(x.dtype)
|
|
random_tensor = paddle.floor(random_tensor) # binarize
|
|
output = x.divide(keep_prob) * random_tensor
|
|
return output
|
|
|
|
|
|
class DropPath(nn.Layer):
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
|
|
|
def __init__(self, drop_prob=None):
|
|
super(DropPath, self).__init__()
|
|
self.drop_prob = drop_prob
|
|
|
|
def forward(self, x):
|
|
return drop_path(x, self.drop_prob, self.training)
|
|
|
|
|
|
class Identity(nn.Layer):
|
|
def __init__(self):
|
|
super(Identity, self).__init__()
|
|
|
|
def forward(self, input):
|
|
return input
|
|
|
|
|
|
class Mlp(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
hidden_features=None,
|
|
out_features=None,
|
|
act_layer=nn.GELU,
|
|
drop=0.0,
|
|
):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.act = act_layer()
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads=8,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
attn_drop=0.0,
|
|
proj_drop=0.0,
|
|
):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x):
|
|
# B= x.shape[0]
|
|
N, C = x.shape[1:]
|
|
qkv = (
|
|
self.qkv(x)
|
|
.reshape((-1, N, 3, self.num_heads, C // self.num_heads))
|
|
.transpose((2, 0, 3, 1, 4))
|
|
)
|
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
|
|
attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
|
|
attn = nn.functional.softmax(attn, axis=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class Block(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop=0.0,
|
|
attn_drop=0.0,
|
|
drop_path=0.0,
|
|
act_layer=nn.GELU,
|
|
norm_layer="nn.LayerNorm",
|
|
epsilon=1e-5,
|
|
):
|
|
super().__init__()
|
|
if isinstance(norm_layer, str):
|
|
self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
|
|
elif isinstance(norm_layer, Callable):
|
|
self.norm1 = norm_layer(dim)
|
|
else:
|
|
raise TypeError("The norm_layer must be str or paddle.nn.layer.Layer class")
|
|
self.attn = Attention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
attn_drop=attn_drop,
|
|
proj_drop=drop,
|
|
)
|
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
|
|
if isinstance(norm_layer, str):
|
|
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
|
|
elif isinstance(norm_layer, Callable):
|
|
self.norm2 = norm_layer(dim)
|
|
else:
|
|
raise TypeError("The norm_layer must be str or paddle.nn.layer.Layer class")
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
return x
|
|
|
|
|
|
class PatchEmbed(nn.Layer):
|
|
"""Image to Patch Embedding"""
|
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
|
super().__init__()
|
|
if isinstance(img_size, int):
|
|
img_size = to_2tuple(img_size)
|
|
if isinstance(patch_size, int):
|
|
patch_size = to_2tuple(patch_size)
|
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
|
self.img_size = img_size
|
|
self.patch_size = patch_size
|
|
self.num_patches = num_patches
|
|
|
|
self.proj = nn.Conv2D(
|
|
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
|
|
)
|
|
|
|
def forward(self, x):
|
|
B, C, H, W = x.shape
|
|
assert (
|
|
H == self.img_size[0] and W == self.img_size[1]
|
|
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
|
|
|
x = self.proj(x).flatten(2).transpose((0, 2, 1))
|
|
return x
|
|
|
|
|
|
class VisionTransformer(nn.Layer):
|
|
"""Vision Transformer with support for patch input"""
|
|
|
|
def __init__(
|
|
self,
|
|
img_size=224,
|
|
patch_size=16,
|
|
in_channels=3,
|
|
class_num=1000,
|
|
embed_dim=768,
|
|
depth=12,
|
|
num_heads=12,
|
|
mlp_ratio=4,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop_rate=0.0,
|
|
attn_drop_rate=0.0,
|
|
drop_path_rate=0.0,
|
|
norm_layer="nn.LayerNorm",
|
|
epsilon=1e-5,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.class_num = class_num
|
|
|
|
self.num_features = self.embed_dim = embed_dim
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
img_size=img_size,
|
|
patch_size=patch_size,
|
|
in_chans=in_channels,
|
|
embed_dim=embed_dim,
|
|
)
|
|
num_patches = self.patch_embed.num_patches
|
|
|
|
self.pos_embed = self.create_parameter(
|
|
shape=(1, num_patches, embed_dim), default_initializer=zeros_
|
|
)
|
|
self.add_parameter("pos_embed", self.pos_embed)
|
|
self.cls_token = self.create_parameter(
|
|
shape=(1, 1, embed_dim), default_initializer=zeros_
|
|
)
|
|
self.add_parameter("cls_token", self.cls_token)
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
dpr = np.linspace(0, drop_path_rate, depth)
|
|
|
|
self.blocks = nn.LayerList(
|
|
[
|
|
Block(
|
|
dim=embed_dim,
|
|
num_heads=num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=dpr[i],
|
|
norm_layer=norm_layer,
|
|
epsilon=epsilon,
|
|
)
|
|
for i in range(depth)
|
|
]
|
|
)
|
|
|
|
self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon)
|
|
|
|
# Classifier head
|
|
self.head = nn.Linear(embed_dim, class_num) if class_num > 0 else Identity()
|
|
|
|
trunc_normal_(self.pos_embed)
|
|
self.out_channels = embed_dim
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
zeros_(m.bias)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
zeros_(m.bias)
|
|
ones_(m.weight)
|
|
|
|
def forward_features(self, x):
|
|
B = x.shape[0]
|
|
x = self.patch_embed(x)
|
|
x = x + self.pos_embed
|
|
x = self.pos_drop(x)
|
|
for blk in self.blocks:
|
|
x = blk(x)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.head(x)
|
|
return x
|
|
|
|
|
|
class ViTParseQ(VisionTransformer):
|
|
def __init__(
|
|
self,
|
|
img_size=[224, 224],
|
|
patch_size=[16, 16],
|
|
in_channels=3,
|
|
embed_dim=768,
|
|
depth=12,
|
|
num_heads=12,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=True,
|
|
drop_rate=0.0,
|
|
attn_drop_rate=0.0,
|
|
drop_path_rate=0.0,
|
|
):
|
|
super().__init__(
|
|
img_size,
|
|
patch_size,
|
|
in_channels,
|
|
embed_dim=embed_dim,
|
|
depth=depth,
|
|
num_heads=num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
drop_rate=drop_rate,
|
|
attn_drop_rate=attn_drop_rate,
|
|
drop_path_rate=drop_path_rate,
|
|
class_num=0,
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.forward_features(x)
|