You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
559 lines
17 KiB
Python
559 lines
17 KiB
Python
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
from paddle.nn.initializer import Constant, KaimingNormal
|
|
from paddle.nn import (
|
|
AdaptiveAvgPool2D,
|
|
BatchNorm2D,
|
|
Conv2D,
|
|
Dropout,
|
|
Hardsigmoid,
|
|
Hardswish,
|
|
Identity,
|
|
Linear,
|
|
ReLU,
|
|
)
|
|
from paddle.regularizer import L2Decay
|
|
from ppocr.modeling.backbones.rec_hgnet import MeanPool2D
|
|
|
|
NET_CONFIG_det = {
|
|
"blocks2":
|
|
# k, in_c, out_c, s, use_se
|
|
[[3, 16, 32, 1, False]],
|
|
"blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
|
|
"blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
|
|
"blocks5": [
|
|
[3, 128, 256, 2, False],
|
|
[5, 256, 256, 1, False],
|
|
[5, 256, 256, 1, False],
|
|
[5, 256, 256, 1, False],
|
|
[5, 256, 256, 1, False],
|
|
],
|
|
"blocks6": [
|
|
[5, 256, 512, 2, True],
|
|
[5, 512, 512, 1, True],
|
|
[5, 512, 512, 1, False],
|
|
[5, 512, 512, 1, False],
|
|
],
|
|
}
|
|
|
|
NET_CONFIG_rec = {
|
|
"blocks2":
|
|
# k, in_c, out_c, s, use_se
|
|
[[3, 16, 32, 1, False]],
|
|
"blocks3": [[3, 32, 64, 1, False], [3, 64, 64, 1, False]],
|
|
"blocks4": [[3, 64, 128, (2, 1), False], [3, 128, 128, 1, False]],
|
|
"blocks5": [
|
|
[3, 128, 256, (1, 2), False],
|
|
[5, 256, 256, 1, False],
|
|
[5, 256, 256, 1, False],
|
|
[5, 256, 256, 1, False],
|
|
[5, 256, 256, 1, False],
|
|
],
|
|
"blocks6": [
|
|
[5, 256, 512, (2, 1), True],
|
|
[5, 512, 512, 1, True],
|
|
[5, 512, 512, (2, 1), False],
|
|
[5, 512, 512, 1, False],
|
|
],
|
|
}
|
|
|
|
|
|
def make_divisible(v, divisor=16, min_value=None):
|
|
if min_value is None:
|
|
min_value = divisor
|
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
if new_v < 0.9 * v:
|
|
new_v += divisor
|
|
return new_v
|
|
|
|
|
|
class LearnableAffineBlock(nn.Layer):
|
|
def __init__(self, scale_value=1.0, bias_value=0.0, lr_mult=1.0, lab_lr=0.1):
|
|
super().__init__()
|
|
self.scale = self.create_parameter(
|
|
shape=[
|
|
1,
|
|
],
|
|
default_initializer=Constant(value=scale_value),
|
|
attr=ParamAttr(learning_rate=lr_mult * lab_lr),
|
|
)
|
|
self.add_parameter("scale", self.scale)
|
|
self.bias = self.create_parameter(
|
|
shape=[
|
|
1,
|
|
],
|
|
default_initializer=Constant(value=bias_value),
|
|
attr=ParamAttr(learning_rate=lr_mult * lab_lr),
|
|
)
|
|
self.add_parameter("bias", self.bias)
|
|
|
|
def forward(self, x):
|
|
return self.scale * x + self.bias
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
def __init__(
|
|
self, in_channels, out_channels, kernel_size, stride, groups=1, lr_mult=1.0
|
|
):
|
|
super().__init__()
|
|
self.conv = Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=(kernel_size - 1) // 2,
|
|
groups=groups,
|
|
weight_attr=ParamAttr(initializer=KaimingNormal(), learning_rate=lr_mult),
|
|
bias_attr=False,
|
|
)
|
|
|
|
self.bn = BatchNorm2D(
|
|
out_channels,
|
|
weight_attr=ParamAttr(regularizer=L2Decay(0.0), learning_rate=lr_mult),
|
|
bias_attr=ParamAttr(regularizer=L2Decay(0.0), learning_rate=lr_mult),
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return x
|
|
|
|
|
|
class Act(nn.Layer):
|
|
def __init__(self, act="hswish", lr_mult=1.0, lab_lr=0.1):
|
|
super().__init__()
|
|
if act == "hswish":
|
|
self.act = Hardswish()
|
|
else:
|
|
assert act == "relu"
|
|
self.act = ReLU()
|
|
self.lab = LearnableAffineBlock(lr_mult=lr_mult, lab_lr=lab_lr)
|
|
|
|
def forward(self, x):
|
|
return self.lab(self.act(x))
|
|
|
|
|
|
class LearnableRepLayer(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=1,
|
|
groups=1,
|
|
num_conv_branches=1,
|
|
lr_mult=1.0,
|
|
lab_lr=0.1,
|
|
):
|
|
super().__init__()
|
|
self.is_repped = False
|
|
self.groups = groups
|
|
self.stride = stride
|
|
self.kernel_size = kernel_size
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.num_conv_branches = num_conv_branches
|
|
self.padding = (kernel_size - 1) // 2
|
|
|
|
self.identity = (
|
|
BatchNorm2D(
|
|
num_features=in_channels,
|
|
weight_attr=ParamAttr(learning_rate=lr_mult),
|
|
bias_attr=ParamAttr(learning_rate=lr_mult),
|
|
)
|
|
if out_channels == in_channels and stride == 1
|
|
else None
|
|
)
|
|
|
|
self.conv_kxk = nn.LayerList(
|
|
[
|
|
ConvBNLayer(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
groups=groups,
|
|
lr_mult=lr_mult,
|
|
)
|
|
for _ in range(self.num_conv_branches)
|
|
]
|
|
)
|
|
|
|
self.conv_1x1 = (
|
|
ConvBNLayer(
|
|
in_channels, out_channels, 1, stride, groups=groups, lr_mult=lr_mult
|
|
)
|
|
if kernel_size > 1
|
|
else None
|
|
)
|
|
|
|
self.lab = LearnableAffineBlock(lr_mult=lr_mult, lab_lr=lab_lr)
|
|
self.act = Act(lr_mult=lr_mult, lab_lr=lab_lr)
|
|
|
|
def forward(self, x):
|
|
# for export
|
|
if self.is_repped:
|
|
out = self.lab(self.reparam_conv(x))
|
|
if self.stride != 2:
|
|
out = self.act(out)
|
|
return out
|
|
|
|
out = 0
|
|
if self.identity is not None:
|
|
out += self.identity(x)
|
|
|
|
if self.conv_1x1 is not None:
|
|
out += self.conv_1x1(x)
|
|
|
|
for conv in self.conv_kxk:
|
|
out += conv(x)
|
|
|
|
out = self.lab(out)
|
|
if self.stride != 2:
|
|
out = self.act(out)
|
|
return out
|
|
|
|
def rep(self):
|
|
if self.is_repped:
|
|
return
|
|
kernel, bias = self._get_kernel_bias()
|
|
self.reparam_conv = Conv2D(
|
|
in_channels=self.in_channels,
|
|
out_channels=self.out_channels,
|
|
kernel_size=self.kernel_size,
|
|
stride=self.stride,
|
|
padding=self.padding,
|
|
groups=self.groups,
|
|
)
|
|
self.reparam_conv.weight.set_value(kernel)
|
|
self.reparam_conv.bias.set_value(bias)
|
|
self.is_repped = True
|
|
|
|
def _pad_kernel_1x1_to_kxk(self, kernel1x1, pad):
|
|
if not isinstance(kernel1x1, paddle.Tensor):
|
|
return 0
|
|
else:
|
|
return nn.functional.pad(kernel1x1, [pad, pad, pad, pad])
|
|
|
|
def _get_kernel_bias(self):
|
|
kernel_conv_1x1, bias_conv_1x1 = self._fuse_bn_tensor(self.conv_1x1)
|
|
kernel_conv_1x1 = self._pad_kernel_1x1_to_kxk(
|
|
kernel_conv_1x1, self.kernel_size // 2
|
|
)
|
|
|
|
kernel_identity, bias_identity = self._fuse_bn_tensor(self.identity)
|
|
|
|
kernel_conv_kxk = 0
|
|
bias_conv_kxk = 0
|
|
for conv in self.conv_kxk:
|
|
kernel, bias = self._fuse_bn_tensor(conv)
|
|
kernel_conv_kxk += kernel
|
|
bias_conv_kxk += bias
|
|
|
|
kernel_reparam = kernel_conv_kxk + kernel_conv_1x1 + kernel_identity
|
|
bias_reparam = bias_conv_kxk + bias_conv_1x1 + bias_identity
|
|
return kernel_reparam, bias_reparam
|
|
|
|
def _fuse_bn_tensor(self, branch):
|
|
if not branch:
|
|
return 0, 0
|
|
elif isinstance(branch, ConvBNLayer):
|
|
kernel = branch.conv.weight
|
|
running_mean = branch.bn._mean
|
|
running_var = branch.bn._variance
|
|
gamma = branch.bn.weight
|
|
beta = branch.bn.bias
|
|
eps = branch.bn._epsilon
|
|
else:
|
|
assert isinstance(branch, BatchNorm2D)
|
|
if not hasattr(self, "id_tensor"):
|
|
input_dim = self.in_channels // self.groups
|
|
kernel_value = paddle.zeros(
|
|
(self.in_channels, input_dim, self.kernel_size, self.kernel_size),
|
|
dtype=branch.weight.dtype,
|
|
)
|
|
for i in range(self.in_channels):
|
|
kernel_value[
|
|
i, i % input_dim, self.kernel_size // 2, self.kernel_size // 2
|
|
] = 1
|
|
self.id_tensor = kernel_value
|
|
kernel = self.id_tensor
|
|
running_mean = branch._mean
|
|
running_var = branch._variance
|
|
gamma = branch.weight
|
|
beta = branch.bias
|
|
eps = branch._epsilon
|
|
std = (running_var + eps).sqrt()
|
|
t = (gamma / std).reshape((-1, 1, 1, 1))
|
|
return kernel * t, beta - running_mean * gamma / std
|
|
|
|
|
|
class SELayer(nn.Layer):
|
|
def __init__(self, channel, reduction=4, lr_mult=1.0):
|
|
super().__init__()
|
|
if "npu" in paddle.device.get_device():
|
|
self.avg_pool = MeanPool2D(1, 1)
|
|
else:
|
|
self.avg_pool = AdaptiveAvgPool2D(1)
|
|
self.conv1 = Conv2D(
|
|
in_channels=channel,
|
|
out_channels=channel // reduction,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
weight_attr=ParamAttr(learning_rate=lr_mult),
|
|
bias_attr=ParamAttr(learning_rate=lr_mult),
|
|
)
|
|
self.relu = ReLU()
|
|
self.conv2 = Conv2D(
|
|
in_channels=channel // reduction,
|
|
out_channels=channel,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
weight_attr=ParamAttr(learning_rate=lr_mult),
|
|
bias_attr=ParamAttr(learning_rate=lr_mult),
|
|
)
|
|
self.hardsigmoid = Hardsigmoid()
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
x = self.avg_pool(x)
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.conv2(x)
|
|
x = self.hardsigmoid(x)
|
|
x = paddle.multiply(x=identity, y=x)
|
|
return x
|
|
|
|
|
|
class LCNetV3Block(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
stride,
|
|
dw_size,
|
|
use_se=False,
|
|
conv_kxk_num=4,
|
|
lr_mult=1.0,
|
|
lab_lr=0.1,
|
|
):
|
|
super().__init__()
|
|
self.use_se = use_se
|
|
self.dw_conv = LearnableRepLayer(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
kernel_size=dw_size,
|
|
stride=stride,
|
|
groups=in_channels,
|
|
num_conv_branches=conv_kxk_num,
|
|
lr_mult=lr_mult,
|
|
lab_lr=lab_lr,
|
|
)
|
|
if use_se:
|
|
self.se = SELayer(in_channels, lr_mult=lr_mult)
|
|
self.pw_conv = LearnableRepLayer(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
num_conv_branches=conv_kxk_num,
|
|
lr_mult=lr_mult,
|
|
lab_lr=lab_lr,
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.dw_conv(x)
|
|
if self.use_se:
|
|
x = self.se(x)
|
|
x = self.pw_conv(x)
|
|
return x
|
|
|
|
|
|
class PPLCNetV3(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
scale=1.0,
|
|
conv_kxk_num=4,
|
|
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
|
|
lab_lr=0.1,
|
|
det=False,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.scale = scale
|
|
self.lr_mult_list = lr_mult_list
|
|
self.det = det
|
|
|
|
self.net_config = NET_CONFIG_det if self.det else NET_CONFIG_rec
|
|
|
|
assert isinstance(
|
|
self.lr_mult_list, (list, tuple)
|
|
), "lr_mult_list should be in (list, tuple) but got {}".format(
|
|
type(self.lr_mult_list)
|
|
)
|
|
assert (
|
|
len(self.lr_mult_list) == 6
|
|
), "lr_mult_list length should be 6 but got {}".format(len(self.lr_mult_list))
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
in_channels=3,
|
|
out_channels=make_divisible(16 * scale),
|
|
kernel_size=3,
|
|
stride=2,
|
|
lr_mult=self.lr_mult_list[0],
|
|
)
|
|
|
|
self.blocks2 = nn.Sequential(
|
|
*[
|
|
LCNetV3Block(
|
|
in_channels=make_divisible(in_c * scale),
|
|
out_channels=make_divisible(out_c * scale),
|
|
dw_size=k,
|
|
stride=s,
|
|
use_se=se,
|
|
conv_kxk_num=conv_kxk_num,
|
|
lr_mult=self.lr_mult_list[1],
|
|
lab_lr=lab_lr,
|
|
)
|
|
for i, (k, in_c, out_c, s, se) in enumerate(self.net_config["blocks2"])
|
|
]
|
|
)
|
|
|
|
self.blocks3 = nn.Sequential(
|
|
*[
|
|
LCNetV3Block(
|
|
in_channels=make_divisible(in_c * scale),
|
|
out_channels=make_divisible(out_c * scale),
|
|
dw_size=k,
|
|
stride=s,
|
|
use_se=se,
|
|
conv_kxk_num=conv_kxk_num,
|
|
lr_mult=self.lr_mult_list[2],
|
|
lab_lr=lab_lr,
|
|
)
|
|
for i, (k, in_c, out_c, s, se) in enumerate(self.net_config["blocks3"])
|
|
]
|
|
)
|
|
|
|
self.blocks4 = nn.Sequential(
|
|
*[
|
|
LCNetV3Block(
|
|
in_channels=make_divisible(in_c * scale),
|
|
out_channels=make_divisible(out_c * scale),
|
|
dw_size=k,
|
|
stride=s,
|
|
use_se=se,
|
|
conv_kxk_num=conv_kxk_num,
|
|
lr_mult=self.lr_mult_list[3],
|
|
lab_lr=lab_lr,
|
|
)
|
|
for i, (k, in_c, out_c, s, se) in enumerate(self.net_config["blocks4"])
|
|
]
|
|
)
|
|
|
|
self.blocks5 = nn.Sequential(
|
|
*[
|
|
LCNetV3Block(
|
|
in_channels=make_divisible(in_c * scale),
|
|
out_channels=make_divisible(out_c * scale),
|
|
dw_size=k,
|
|
stride=s,
|
|
use_se=se,
|
|
conv_kxk_num=conv_kxk_num,
|
|
lr_mult=self.lr_mult_list[4],
|
|
lab_lr=lab_lr,
|
|
)
|
|
for i, (k, in_c, out_c, s, se) in enumerate(self.net_config["blocks5"])
|
|
]
|
|
)
|
|
|
|
self.blocks6 = nn.Sequential(
|
|
*[
|
|
LCNetV3Block(
|
|
in_channels=make_divisible(in_c * scale),
|
|
out_channels=make_divisible(out_c * scale),
|
|
dw_size=k,
|
|
stride=s,
|
|
use_se=se,
|
|
conv_kxk_num=conv_kxk_num,
|
|
lr_mult=self.lr_mult_list[5],
|
|
lab_lr=lab_lr,
|
|
)
|
|
for i, (k, in_c, out_c, s, se) in enumerate(self.net_config["blocks6"])
|
|
]
|
|
)
|
|
self.out_channels = make_divisible(512 * scale)
|
|
|
|
if self.det:
|
|
mv_c = [16, 24, 56, 480]
|
|
self.out_channels = [
|
|
make_divisible(self.net_config["blocks3"][-1][2] * scale),
|
|
make_divisible(self.net_config["blocks4"][-1][2] * scale),
|
|
make_divisible(self.net_config["blocks5"][-1][2] * scale),
|
|
make_divisible(self.net_config["blocks6"][-1][2] * scale),
|
|
]
|
|
|
|
self.layer_list = nn.LayerList(
|
|
[
|
|
nn.Conv2D(self.out_channels[0], int(mv_c[0] * scale), 1, 1, 0),
|
|
nn.Conv2D(self.out_channels[1], int(mv_c[1] * scale), 1, 1, 0),
|
|
nn.Conv2D(self.out_channels[2], int(mv_c[2] * scale), 1, 1, 0),
|
|
nn.Conv2D(self.out_channels[3], int(mv_c[3] * scale), 1, 1, 0),
|
|
]
|
|
)
|
|
self.out_channels = [
|
|
int(mv_c[0] * scale),
|
|
int(mv_c[1] * scale),
|
|
int(mv_c[2] * scale),
|
|
int(mv_c[3] * scale),
|
|
]
|
|
|
|
def forward(self, x):
|
|
out_list = []
|
|
x = self.conv1(x)
|
|
|
|
x = self.blocks2(x)
|
|
x = self.blocks3(x)
|
|
out_list.append(x)
|
|
x = self.blocks4(x)
|
|
out_list.append(x)
|
|
x = self.blocks5(x)
|
|
out_list.append(x)
|
|
x = self.blocks6(x)
|
|
out_list.append(x)
|
|
|
|
if self.det:
|
|
out_list[0] = self.layer_list[0](out_list[0])
|
|
out_list[1] = self.layer_list[1](out_list[1])
|
|
out_list[2] = self.layer_list[2](out_list[2])
|
|
out_list[3] = self.layer_list[3](out_list[3])
|
|
return out_list
|
|
|
|
if self.training:
|
|
x = F.adaptive_avg_pool2d(x, [1, 40])
|
|
else:
|
|
x = F.avg_pool2d(x, [3, 2])
|
|
return x
|