You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

135 lines
5.1 KiB
Python

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
class VQASerTokenChunk(object):
def __init__(self, max_seq_len=512, infer_mode=False, **kwargs):
self.max_seq_len = max_seq_len
self.infer_mode = infer_mode
def __call__(self, data):
encoded_inputs_all = []
seq_len = len(data["input_ids"])
for index in range(0, seq_len, self.max_seq_len):
chunk_beg = index
chunk_end = min(index + self.max_seq_len, seq_len)
encoded_inputs_example = {}
for key in data:
if key in [
"label",
"input_ids",
"labels",
"token_type_ids",
"bbox",
"attention_mask",
]:
if self.infer_mode and key == "labels":
encoded_inputs_example[key] = data[key]
else:
encoded_inputs_example[key] = data[key][chunk_beg:chunk_end]
else:
encoded_inputs_example[key] = data[key]
encoded_inputs_all.append(encoded_inputs_example)
if len(encoded_inputs_all) == 0:
return None
return encoded_inputs_all[0]
class VQAReTokenChunk(object):
def __init__(
self, max_seq_len=512, entities_labels=None, infer_mode=False, **kwargs
):
self.max_seq_len = max_seq_len
self.entities_labels = (
{"HEADER": 0, "QUESTION": 1, "ANSWER": 2}
if entities_labels is None
else entities_labels
)
self.infer_mode = infer_mode
def __call__(self, data):
# prepare data
entities = data.pop("entities")
relations = data.pop("relations")
encoded_inputs_all = []
for index in range(0, len(data["input_ids"]), self.max_seq_len):
item = {}
for key in data:
if key in [
"label",
"input_ids",
"labels",
"token_type_ids",
"bbox",
"attention_mask",
]:
if self.infer_mode and key == "labels":
item[key] = data[key]
else:
item[key] = data[key][index : index + self.max_seq_len]
else:
item[key] = data[key]
# select entity in current chunk
entities_in_this_span = []
global_to_local_map = {} #
for entity_id, entity in enumerate(entities):
if (
index <= entity["start"] < index + self.max_seq_len
and index <= entity["end"] < index + self.max_seq_len
):
entity["start"] = entity["start"] - index
entity["end"] = entity["end"] - index
global_to_local_map[entity_id] = len(entities_in_this_span)
entities_in_this_span.append(entity)
# select relations in current chunk
relations_in_this_span = []
for relation in relations:
if (
index <= relation["start_index"] < index + self.max_seq_len
and index <= relation["end_index"] < index + self.max_seq_len
):
relations_in_this_span.append(
{
"head": global_to_local_map[relation["head"]],
"tail": global_to_local_map[relation["tail"]],
"start_index": relation["start_index"] - index,
"end_index": relation["end_index"] - index,
}
)
item.update(
{
"entities": self.reformat(entities_in_this_span),
"relations": self.reformat(relations_in_this_span),
}
)
if len(item["entities"]) > 0:
item["entities"]["label"] = [
self.entities_labels[x] for x in item["entities"]["label"]
]
encoded_inputs_all.append(item)
if len(encoded_inputs_all) == 0:
return None
return encoded_inputs_all[0]
def reformat(self, data):
new_data = defaultdict(list)
for item in data:
for k, v in item.items():
new_data[k].append(v)
return new_data