You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1019 lines
40 KiB
Python
1019 lines
40 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import sys
|
|
import importlib
|
|
|
|
__dir__ = os.path.dirname(__file__)
|
|
|
|
from paddle.utils import try_import
|
|
|
|
sys.path.append(os.path.join(__dir__, ""))
|
|
|
|
import cv2
|
|
from copy import deepcopy
|
|
import logging
|
|
import numpy as np
|
|
from pathlib import Path
|
|
import base64
|
|
from io import BytesIO
|
|
import pprint
|
|
from PIL import Image
|
|
|
|
|
|
def _import_file(module_name, file_path, make_importable=False):
|
|
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
|
module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(module)
|
|
if make_importable:
|
|
sys.modules[module_name] = module
|
|
return module
|
|
|
|
|
|
tools = _import_file(
|
|
"tools", os.path.join(__dir__, "tools/__init__.py"), make_importable=True
|
|
)
|
|
ppocr = importlib.import_module("ppocr", "paddleocr")
|
|
ppstructure = importlib.import_module("ppstructure", "paddleocr")
|
|
from ppocr.utils.logging import get_logger
|
|
|
|
from ppocr.utils.utility import (
|
|
check_and_read,
|
|
get_image_file_list,
|
|
alpha_to_color,
|
|
binarize_img,
|
|
)
|
|
from ppocr.utils.network import (
|
|
maybe_download,
|
|
download_with_progressbar,
|
|
is_link,
|
|
confirm_model_dir_url,
|
|
)
|
|
from tools.infer import predict_system
|
|
from tools.infer.utility import draw_ocr, str2bool, check_gpu
|
|
from ppstructure.utility import init_args, draw_structure_result
|
|
from ppstructure.predict_system import StructureSystem, save_structure_res, to_excel
|
|
from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx
|
|
|
|
logger = get_logger()
|
|
|
|
__all__ = [
|
|
"PaddleOCR",
|
|
"PPStructure",
|
|
"draw_ocr",
|
|
"draw_structure_result",
|
|
"save_structure_res",
|
|
"download_with_progressbar",
|
|
"to_excel",
|
|
"sorted_layout_boxes",
|
|
"convert_info_docx",
|
|
]
|
|
|
|
SUPPORT_DET_MODEL = ["DB"]
|
|
SUPPORT_REC_MODEL = ["CRNN", "SVTR_LCNet"]
|
|
BASE_DIR = os.path.expanduser("~/.paddleocr/")
|
|
|
|
DEFAULT_OCR_MODEL_VERSION = "PP-OCRv4"
|
|
SUPPORT_OCR_MODEL_VERSION = ["PP-OCR", "PP-OCRv2", "PP-OCRv3", "PP-OCRv4"]
|
|
DEFAULT_STRUCTURE_MODEL_VERSION = "PP-StructureV2"
|
|
SUPPORT_STRUCTURE_MODEL_VERSION = ["PP-Structure", "PP-StructureV2"]
|
|
MODEL_URLS = {
|
|
"OCR": {
|
|
"PP-OCRv4": {
|
|
"det": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_det_infer.tar",
|
|
},
|
|
"en": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar",
|
|
},
|
|
"ml": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"
|
|
},
|
|
},
|
|
"rec": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
|
|
},
|
|
"en": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/english/en_PP-OCRv4_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/en_dict.txt",
|
|
},
|
|
"korean": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/korean_PP-OCRv4_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/korean_dict.txt",
|
|
},
|
|
"japan": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/japan_PP-OCRv4_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/japan_dict.txt",
|
|
},
|
|
"chinese_cht": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt",
|
|
},
|
|
"ta": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ta_PP-OCRv4_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/ta_dict.txt",
|
|
},
|
|
"te": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/te_PP-OCRv4_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/te_dict.txt",
|
|
},
|
|
"ka": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ka_PP-OCRv4_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/ka_dict.txt",
|
|
},
|
|
"latin": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/latin_dict.txt",
|
|
},
|
|
"arabic": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/arabic_PP-OCRv4_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/arabic_dict.txt",
|
|
},
|
|
"cyrillic": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/cyrillic_dict.txt",
|
|
},
|
|
"devanagari": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/devanagari_PP-OCRv4_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/devanagari_dict.txt",
|
|
},
|
|
},
|
|
"cls": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
|
|
}
|
|
},
|
|
},
|
|
"PP-OCRv3": {
|
|
"det": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar",
|
|
},
|
|
"en": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar",
|
|
},
|
|
"ml": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"
|
|
},
|
|
},
|
|
"rec": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
|
|
},
|
|
"en": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/en_dict.txt",
|
|
},
|
|
"korean": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/korean_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/korean_dict.txt",
|
|
},
|
|
"japan": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/japan_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/japan_dict.txt",
|
|
},
|
|
"chinese_cht": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt",
|
|
},
|
|
"ta": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ta_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/ta_dict.txt",
|
|
},
|
|
"te": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/te_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/te_dict.txt",
|
|
},
|
|
"ka": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ka_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/ka_dict.txt",
|
|
},
|
|
"latin": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/latin_dict.txt",
|
|
},
|
|
"arabic": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/arabic_dict.txt",
|
|
},
|
|
"cyrillic": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/cyrillic_dict.txt",
|
|
},
|
|
"devanagari": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/devanagari_PP-OCRv3_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/devanagari_dict.txt",
|
|
},
|
|
},
|
|
"cls": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
|
|
}
|
|
},
|
|
},
|
|
"PP-OCRv2": {
|
|
"det": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar",
|
|
},
|
|
},
|
|
"rec": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
|
|
}
|
|
},
|
|
"cls": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
|
|
}
|
|
},
|
|
},
|
|
"PP-OCR": {
|
|
"det": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar",
|
|
},
|
|
"en": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_ppocr_mobile_v2.0_det_infer.tar",
|
|
},
|
|
"structure": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar"
|
|
},
|
|
},
|
|
"rec": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
|
|
},
|
|
"en": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/en_dict.txt",
|
|
},
|
|
"french": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/french_dict.txt",
|
|
},
|
|
"german": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/german_dict.txt",
|
|
},
|
|
"korean": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/korean_dict.txt",
|
|
},
|
|
"japan": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/japan_dict.txt",
|
|
},
|
|
"chinese_cht": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt",
|
|
},
|
|
"ta": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/ta_dict.txt",
|
|
},
|
|
"te": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/te_dict.txt",
|
|
},
|
|
"ka": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/ka_dict.txt",
|
|
},
|
|
"latin": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/latin_dict.txt",
|
|
},
|
|
"arabic": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/arabic_dict.txt",
|
|
},
|
|
"cyrillic": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/cyrillic_dict.txt",
|
|
},
|
|
"devanagari": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar",
|
|
"dict_path": "./ppocr/utils/dict/devanagari_dict.txt",
|
|
},
|
|
"structure": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar",
|
|
"dict_path": "ppocr/utils/dict/table_dict.txt",
|
|
},
|
|
},
|
|
"cls": {
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
|
|
}
|
|
},
|
|
},
|
|
},
|
|
"STRUCTURE": {
|
|
"PP-Structure": {
|
|
"table": {
|
|
"en": {
|
|
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar",
|
|
"dict_path": "ppocr/utils/dict/table_structure_dict.txt",
|
|
}
|
|
}
|
|
},
|
|
"PP-StructureV2": {
|
|
"table": {
|
|
"en": {
|
|
"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar",
|
|
"dict_path": "ppocr/utils/dict/table_structure_dict.txt",
|
|
},
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar",
|
|
"dict_path": "ppocr/utils/dict/table_structure_dict_ch.txt",
|
|
},
|
|
},
|
|
"layout": {
|
|
"en": {
|
|
"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar",
|
|
"dict_path": "ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt",
|
|
},
|
|
"ch": {
|
|
"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar",
|
|
"dict_path": "ppocr/utils/dict/layout_dict/layout_cdla_dict.txt",
|
|
},
|
|
},
|
|
},
|
|
},
|
|
}
|
|
|
|
|
|
def parse_args(mMain=True):
|
|
import argparse
|
|
|
|
parser = init_args()
|
|
parser.add_help = mMain
|
|
parser.add_argument("--lang", type=str, default="ch")
|
|
parser.add_argument("--det", type=str2bool, default=True)
|
|
parser.add_argument("--rec", type=str2bool, default=True)
|
|
parser.add_argument("--type", type=str, default="ocr")
|
|
parser.add_argument("--savefile", type=str2bool, default=False)
|
|
parser.add_argument(
|
|
"--ocr_version",
|
|
type=str,
|
|
choices=SUPPORT_OCR_MODEL_VERSION,
|
|
default="PP-OCRv4",
|
|
help="OCR Model version, the current model support list is as follows: "
|
|
"1. PP-OCRv4/v3 Support Chinese and English detection and recognition model, and direction classifier model"
|
|
"2. PP-OCRv2 Support Chinese detection and recognition model. "
|
|
"3. PP-OCR support Chinese detection, recognition and direction classifier and multilingual recognition model.",
|
|
)
|
|
parser.add_argument(
|
|
"--structure_version",
|
|
type=str,
|
|
choices=SUPPORT_STRUCTURE_MODEL_VERSION,
|
|
default="PP-StructureV2",
|
|
help="Model version, the current model support list is as follows:"
|
|
" 1. PP-Structure Support en table structure model."
|
|
" 2. PP-StructureV2 Support ch and en table structure model.",
|
|
)
|
|
|
|
for action in parser._actions:
|
|
if action.dest in [
|
|
"rec_char_dict_path",
|
|
"table_char_dict_path",
|
|
"layout_dict_path",
|
|
]:
|
|
action.default = None
|
|
if mMain:
|
|
return parser.parse_args()
|
|
else:
|
|
inference_args_dict = {}
|
|
for action in parser._actions:
|
|
inference_args_dict[action.dest] = action.default
|
|
return argparse.Namespace(**inference_args_dict)
|
|
|
|
|
|
def parse_lang(lang):
|
|
latin_lang = [
|
|
"af",
|
|
"az",
|
|
"bs",
|
|
"cs",
|
|
"cy",
|
|
"da",
|
|
"de",
|
|
"es",
|
|
"et",
|
|
"fr",
|
|
"ga",
|
|
"hr",
|
|
"hu",
|
|
"id",
|
|
"is",
|
|
"it",
|
|
"ku",
|
|
"la",
|
|
"lt",
|
|
"lv",
|
|
"mi",
|
|
"ms",
|
|
"mt",
|
|
"nl",
|
|
"no",
|
|
"oc",
|
|
"pi",
|
|
"pl",
|
|
"pt",
|
|
"ro",
|
|
"rs_latin",
|
|
"sk",
|
|
"sl",
|
|
"sq",
|
|
"sv",
|
|
"sw",
|
|
"tl",
|
|
"tr",
|
|
"uz",
|
|
"vi",
|
|
"french",
|
|
"german",
|
|
]
|
|
arabic_lang = ["ar", "fa", "ug", "ur"]
|
|
cyrillic_lang = [
|
|
"ru",
|
|
"rs_cyrillic",
|
|
"be",
|
|
"bg",
|
|
"uk",
|
|
"mn",
|
|
"abq",
|
|
"ady",
|
|
"kbd",
|
|
"ava",
|
|
"dar",
|
|
"inh",
|
|
"che",
|
|
"lbe",
|
|
"lez",
|
|
"tab",
|
|
]
|
|
devanagari_lang = [
|
|
"hi",
|
|
"mr",
|
|
"ne",
|
|
"bh",
|
|
"mai",
|
|
"ang",
|
|
"bho",
|
|
"mah",
|
|
"sck",
|
|
"new",
|
|
"gom",
|
|
"sa",
|
|
"bgc",
|
|
]
|
|
if lang in latin_lang:
|
|
lang = "latin"
|
|
elif lang in arabic_lang:
|
|
lang = "arabic"
|
|
elif lang in cyrillic_lang:
|
|
lang = "cyrillic"
|
|
elif lang in devanagari_lang:
|
|
lang = "devanagari"
|
|
assert (
|
|
lang in MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"]
|
|
), "param lang must in {}, but got {}".format(
|
|
MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"].keys(), lang
|
|
)
|
|
if lang == "ch":
|
|
det_lang = "ch"
|
|
elif lang == "structure":
|
|
det_lang = "structure"
|
|
elif lang in ["en", "latin"]:
|
|
det_lang = "en"
|
|
else:
|
|
det_lang = "ml"
|
|
return lang, det_lang
|
|
|
|
|
|
def get_model_config(type, version, model_type, lang):
|
|
if type == "OCR":
|
|
DEFAULT_MODEL_VERSION = DEFAULT_OCR_MODEL_VERSION
|
|
elif type == "STRUCTURE":
|
|
DEFAULT_MODEL_VERSION = DEFAULT_STRUCTURE_MODEL_VERSION
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
model_urls = MODEL_URLS[type]
|
|
if version not in model_urls:
|
|
version = DEFAULT_MODEL_VERSION
|
|
if model_type not in model_urls[version]:
|
|
if model_type in model_urls[DEFAULT_MODEL_VERSION]:
|
|
version = DEFAULT_MODEL_VERSION
|
|
else:
|
|
logger.error(
|
|
"{} models is not support, we only support {}".format(
|
|
model_type, model_urls[DEFAULT_MODEL_VERSION].keys()
|
|
)
|
|
)
|
|
sys.exit(-1)
|
|
|
|
if lang not in model_urls[version][model_type]:
|
|
if lang in model_urls[DEFAULT_MODEL_VERSION][model_type]:
|
|
version = DEFAULT_MODEL_VERSION
|
|
else:
|
|
logger.error(
|
|
"lang {} is not support, we only support {} for {} models".format(
|
|
lang,
|
|
model_urls[DEFAULT_MODEL_VERSION][model_type].keys(),
|
|
model_type,
|
|
)
|
|
)
|
|
sys.exit(-1)
|
|
return model_urls[version][model_type][lang]
|
|
|
|
|
|
def img_decode(content: bytes):
|
|
np_arr = np.frombuffer(content, dtype=np.uint8)
|
|
return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED)
|
|
|
|
|
|
def check_img(img, alpha_color=(255, 255, 255)):
|
|
"""
|
|
Check the image data. If it is another type of image file, try to decode it into a numpy array.
|
|
The inference network requires three-channel images, So the following channel conversions are done
|
|
single channel image: Gray to RGB R←Y,G←Y,B←Y
|
|
four channel image: alpha_to_color
|
|
args:
|
|
Crop_img: image data
|
|
file format: jpg, png and other image formats that opencv can decode, as well as gif and pdf formats
|
|
storage type: binary image, net image file, local image file
|
|
alpha_color: Background color in images in RGBA format
|
|
return: numpy.array (h, w, 3) or list (p, h, w, 3) (p: page of pdf), boolean, boolean
|
|
"""
|
|
flag_gif, flag_pdf = False, False
|
|
if isinstance(img, bytes):
|
|
img = img_decode(img)
|
|
if isinstance(img, str):
|
|
# download net image
|
|
if is_link(img):
|
|
download_with_progressbar(img, "tmp.jpg")
|
|
img = "tmp.jpg"
|
|
image_file = img
|
|
img, flag_gif, flag_pdf = check_and_read(image_file)
|
|
if not flag_gif and not flag_pdf:
|
|
with open(image_file, "rb") as f:
|
|
img_str = f.read()
|
|
img = img_decode(img_str)
|
|
if img is None:
|
|
try:
|
|
buf = BytesIO()
|
|
image = BytesIO(img_str)
|
|
im = Image.open(image)
|
|
rgb = im.convert("RGB")
|
|
rgb.save(buf, "jpeg")
|
|
buf.seek(0)
|
|
image_bytes = buf.read()
|
|
data_base64 = str(base64.b64encode(image_bytes), encoding="utf-8")
|
|
image_decode = base64.b64decode(data_base64)
|
|
img_array = np.frombuffer(image_decode, np.uint8)
|
|
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
|
|
except:
|
|
logger.error("error in loading image:{}".format(image_file))
|
|
return None, flag_gif, flag_pdf
|
|
if img is None:
|
|
logger.error("error in loading image:{}".format(image_file))
|
|
return None, flag_gif, flag_pdf
|
|
# single channel image array.shape:h,w
|
|
if isinstance(img, np.ndarray) and len(img.shape) == 2:
|
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
|
# four channel image array.shape:h,w,c
|
|
if isinstance(img, np.ndarray) and len(img.shape) == 3 and img.shape[2] == 4:
|
|
img = alpha_to_color(img, alpha_color)
|
|
return img, flag_gif, flag_pdf
|
|
|
|
|
|
class PaddleOCR(predict_system.TextSystem):
|
|
def __init__(self, **kwargs):
|
|
"""
|
|
paddleocr package
|
|
args:
|
|
**kwargs: other params show in paddleocr --help
|
|
"""
|
|
params = parse_args(mMain=False)
|
|
params.__dict__.update(**kwargs)
|
|
assert (
|
|
params.ocr_version in SUPPORT_OCR_MODEL_VERSION
|
|
), "ocr_version must in {}, but get {}".format(
|
|
SUPPORT_OCR_MODEL_VERSION, params.ocr_version
|
|
)
|
|
params.use_gpu = check_gpu(params.use_gpu)
|
|
|
|
if not params.show_log:
|
|
logger.setLevel(logging.INFO)
|
|
self.use_angle_cls = params.use_angle_cls
|
|
lang, det_lang = parse_lang(params.lang)
|
|
|
|
# init model dir
|
|
det_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)
|
|
params.det_model_dir, det_url = confirm_model_dir_url(
|
|
params.det_model_dir,
|
|
os.path.join(BASE_DIR, "whl", "det", det_lang),
|
|
det_model_config["url"],
|
|
)
|
|
rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)
|
|
params.rec_model_dir, rec_url = confirm_model_dir_url(
|
|
params.rec_model_dir,
|
|
os.path.join(BASE_DIR, "whl", "rec", lang),
|
|
rec_model_config["url"],
|
|
)
|
|
cls_model_config = get_model_config("OCR", params.ocr_version, "cls", "ch")
|
|
params.cls_model_dir, cls_url = confirm_model_dir_url(
|
|
params.cls_model_dir,
|
|
os.path.join(BASE_DIR, "whl", "cls"),
|
|
cls_model_config["url"],
|
|
)
|
|
if params.ocr_version in ["PP-OCRv3", "PP-OCRv4"]:
|
|
params.rec_image_shape = "3, 48, 320"
|
|
else:
|
|
params.rec_image_shape = "3, 32, 320"
|
|
# download model if using paddle infer
|
|
if not params.use_onnx:
|
|
maybe_download(params.det_model_dir, det_url)
|
|
maybe_download(params.rec_model_dir, rec_url)
|
|
maybe_download(params.cls_model_dir, cls_url)
|
|
|
|
if params.det_algorithm not in SUPPORT_DET_MODEL:
|
|
logger.error("det_algorithm must in {}".format(SUPPORT_DET_MODEL))
|
|
sys.exit(0)
|
|
if params.rec_algorithm not in SUPPORT_REC_MODEL:
|
|
logger.error("rec_algorithm must in {}".format(SUPPORT_REC_MODEL))
|
|
sys.exit(0)
|
|
|
|
if params.rec_char_dict_path is None:
|
|
params.rec_char_dict_path = str(
|
|
Path(__file__).parent / rec_model_config["dict_path"]
|
|
)
|
|
|
|
logger.debug(params)
|
|
# init det_model and rec_model
|
|
super().__init__(params)
|
|
self.page_num = params.page_num
|
|
|
|
def ocr(
|
|
self,
|
|
img,
|
|
det=True,
|
|
rec=True,
|
|
cls=True,
|
|
bin=False,
|
|
inv=False,
|
|
alpha_color=(255, 255, 255),
|
|
slice={},
|
|
):
|
|
"""
|
|
OCR with PaddleOCR
|
|
|
|
Args:
|
|
img: Image for OCR. It can be an ndarray, img_path, or a list of ndarrays.
|
|
det: Use text detection or not. If False, only text recognition will be executed. Default is True.
|
|
rec: Use text recognition or not. If False, only text detection will be executed. Default is True.
|
|
cls: Use angle classifier or not. Default is True. If True, the text with a rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance.
|
|
bin: Binarize image to black and white. Default is False.
|
|
inv: Invert image colors. Default is False.
|
|
alpha_color: Set RGB color Tuple for transparent parts replacement. Default is pure white.
|
|
slice: Use sliding window inference for large images. Both det and rec must be True. Requires int values for slice["horizontal_stride"], slice["vertical_stride"], slice["merge_x_thres"], slice["merge_y_thres"] (See doc/doc_en/slice_en.md). Default is {}.
|
|
|
|
Returns:
|
|
If both det and rec are True, returns a list of OCR results for each image. Each OCR result is a list of bounding boxes and recognized text for each detected text region.
|
|
If det is True and rec is False, returns a list of detected bounding boxes for each image.
|
|
If det is False and rec is True, returns a list of recognized text for each image.
|
|
If both det and rec are False, returns a list of angle classification results for each image.
|
|
|
|
Raises:
|
|
AssertionError: If the input image is not of type ndarray, list, str, or bytes.
|
|
SystemExit: If det is True and the input is a list of images.
|
|
|
|
Note:
|
|
- If the angle classifier is not initialized (use_angle_cls=False), it will not be used during the forward process.
|
|
- For PDF files, if the input is a list of images and the page_num is specified, only the first page_num images will be processed.
|
|
- The preprocess_image function is used to preprocess the input image by applying alpha color replacement, inversion, and binarization if specified.
|
|
"""
|
|
assert isinstance(img, (np.ndarray, list, str, bytes))
|
|
if isinstance(img, list) and det == True:
|
|
logger.error("When input a list of images, det must be false")
|
|
exit(0)
|
|
if cls == True and self.use_angle_cls == False:
|
|
logger.warning(
|
|
"Since the angle classifier is not initialized, it will not be used during the forward process"
|
|
)
|
|
|
|
img, flag_gif, flag_pdf = check_img(img, alpha_color)
|
|
# for infer pdf file
|
|
if isinstance(img, list) and flag_pdf:
|
|
if self.page_num > len(img) or self.page_num == 0:
|
|
imgs = img
|
|
else:
|
|
imgs = img[: self.page_num]
|
|
else:
|
|
imgs = [img]
|
|
|
|
def preprocess_image(_image):
|
|
_image = alpha_to_color(_image, alpha_color)
|
|
if inv:
|
|
_image = cv2.bitwise_not(_image)
|
|
if bin:
|
|
_image = binarize_img(_image)
|
|
return _image
|
|
|
|
if det and rec:
|
|
ocr_res = []
|
|
for idx, img in enumerate(imgs):
|
|
img = preprocess_image(img)
|
|
dt_boxes, rec_res, _ = self.__call__(img, cls, slice)
|
|
if not dt_boxes and not rec_res:
|
|
ocr_res.append(None)
|
|
continue
|
|
tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
|
|
ocr_res.append(tmp_res)
|
|
return ocr_res
|
|
elif det and not rec:
|
|
ocr_res = []
|
|
for idx, img in enumerate(imgs):
|
|
img = preprocess_image(img)
|
|
dt_boxes, elapse = self.text_detector(img)
|
|
if dt_boxes.size == 0:
|
|
ocr_res.append(None)
|
|
continue
|
|
tmp_res = [box.tolist() for box in dt_boxes]
|
|
ocr_res.append(tmp_res)
|
|
return ocr_res
|
|
else:
|
|
ocr_res = []
|
|
cls_res = []
|
|
for idx, img in enumerate(imgs):
|
|
if not isinstance(img, list):
|
|
img = preprocess_image(img)
|
|
img = [img]
|
|
if self.use_angle_cls and cls:
|
|
img, cls_res_tmp, elapse = self.text_classifier(img)
|
|
if not rec:
|
|
cls_res.append(cls_res_tmp)
|
|
rec_res, elapse = self.text_recognizer(img)
|
|
ocr_res.append(rec_res)
|
|
if not rec:
|
|
return cls_res
|
|
return ocr_res
|
|
|
|
|
|
class PPStructure(StructureSystem):
|
|
"""
|
|
PPStructure class represents the structure analysis system for PaddleOCR.
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
"""
|
|
Initializes the PPStructure object with the given parameters.
|
|
|
|
Args:
|
|
**kwargs: Additional keyword arguments to customize the behavior of the structure analysis system.
|
|
|
|
Raises:
|
|
AssertionError: If the structure version is not supported.
|
|
|
|
"""
|
|
params = parse_args(mMain=False)
|
|
params.__dict__.update(**kwargs)
|
|
assert (
|
|
params.structure_version in SUPPORT_STRUCTURE_MODEL_VERSION
|
|
), "structure_version must in {}, but get {}".format(
|
|
SUPPORT_STRUCTURE_MODEL_VERSION, params.structure_version
|
|
)
|
|
params.use_gpu = check_gpu(params.use_gpu)
|
|
params.mode = "structure"
|
|
|
|
if not params.show_log:
|
|
logger.setLevel(logging.INFO)
|
|
lang, det_lang = parse_lang(params.lang)
|
|
if lang == "ch":
|
|
table_lang = "ch"
|
|
else:
|
|
table_lang = "en"
|
|
if params.structure_version == "PP-Structure":
|
|
params.merge_no_span_structure = False
|
|
|
|
# init model dir
|
|
det_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)
|
|
params.det_model_dir, det_url = confirm_model_dir_url(
|
|
params.det_model_dir,
|
|
os.path.join(BASE_DIR, "whl", "det", det_lang),
|
|
det_model_config["url"],
|
|
)
|
|
rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)
|
|
params.rec_model_dir, rec_url = confirm_model_dir_url(
|
|
params.rec_model_dir,
|
|
os.path.join(BASE_DIR, "whl", "rec", lang),
|
|
rec_model_config["url"],
|
|
)
|
|
table_model_config = get_model_config(
|
|
"STRUCTURE", params.structure_version, "table", table_lang
|
|
)
|
|
params.table_model_dir, table_url = confirm_model_dir_url(
|
|
params.table_model_dir,
|
|
os.path.join(BASE_DIR, "whl", "table"),
|
|
table_model_config["url"],
|
|
)
|
|
layout_model_config = get_model_config(
|
|
"STRUCTURE", params.structure_version, "layout", lang
|
|
)
|
|
params.layout_model_dir, layout_url = confirm_model_dir_url(
|
|
params.layout_model_dir,
|
|
os.path.join(BASE_DIR, "whl", "layout"),
|
|
layout_model_config["url"],
|
|
)
|
|
# download model
|
|
if not params.use_onnx:
|
|
maybe_download(params.det_model_dir, det_url)
|
|
maybe_download(params.rec_model_dir, rec_url)
|
|
maybe_download(params.table_model_dir, table_url)
|
|
maybe_download(params.layout_model_dir, layout_url)
|
|
|
|
if params.rec_char_dict_path is None:
|
|
params.rec_char_dict_path = str(
|
|
Path(__file__).parent / rec_model_config["dict_path"]
|
|
)
|
|
if params.table_char_dict_path is None:
|
|
params.table_char_dict_path = str(
|
|
Path(__file__).parent / table_model_config["dict_path"]
|
|
)
|
|
if params.layout_dict_path is None:
|
|
params.layout_dict_path = str(
|
|
Path(__file__).parent / layout_model_config["dict_path"]
|
|
)
|
|
logger.debug(params)
|
|
super().__init__(params)
|
|
|
|
def __call__(
|
|
self,
|
|
img,
|
|
return_ocr_result_in_table=False,
|
|
img_idx=0,
|
|
alpha_color=(255, 255, 255),
|
|
):
|
|
"""
|
|
Performs structure analysis on the input image.
|
|
|
|
Args:
|
|
img (str or numpy.ndarray): The input image to perform structure analysis on.
|
|
return_ocr_result_in_table (bool, optional): Whether to return OCR results in table format. Defaults to False.
|
|
img_idx (int, optional): The index of the image. Defaults to 0.
|
|
alpha_color (tuple, optional): The alpha color for transparent images. Defaults to (255, 255, 255).
|
|
|
|
Returns:
|
|
list or dict: The structure analysis results.
|
|
|
|
"""
|
|
img, flag_gif, flag_pdf = check_img(img, alpha_color)
|
|
if isinstance(img, list) and flag_pdf:
|
|
res_list = []
|
|
for index, pdf_img in enumerate(img):
|
|
logger.info("processing {}/{} page:".format(index + 1, len(img)))
|
|
res, _ = super().__call__(
|
|
pdf_img, return_ocr_result_in_table, img_idx=index
|
|
)
|
|
res_list.append(res)
|
|
return res_list
|
|
res, _ = super().__call__(img, return_ocr_result_in_table, img_idx=img_idx)
|
|
return res
|
|
|
|
|
|
def main():
|
|
"""
|
|
Main function for running PaddleOCR or PPStructure.
|
|
|
|
This function takes command line arguments, processes the images, and performs OCR or structure analysis based on the specified type.
|
|
|
|
Args:
|
|
None
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
# for cmd
|
|
args = parse_args(mMain=True)
|
|
image_dir = args.image_dir
|
|
if is_link(image_dir):
|
|
download_with_progressbar(image_dir, "tmp.jpg")
|
|
image_file_list = ["tmp.jpg"]
|
|
else:
|
|
image_file_list = get_image_file_list(args.image_dir)
|
|
if len(image_file_list) == 0:
|
|
logger.error("no images find in {}".format(args.image_dir))
|
|
return
|
|
if args.type == "ocr":
|
|
engine = PaddleOCR(**(args.__dict__))
|
|
elif args.type == "structure":
|
|
engine = PPStructure(**(args.__dict__))
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
for img_path in image_file_list:
|
|
img_name = os.path.basename(img_path).split(".")[0]
|
|
logger.info("{}{}{}".format("*" * 10, img_path, "*" * 10))
|
|
if args.type == "ocr":
|
|
result = engine.ocr(
|
|
img_path,
|
|
det=args.det,
|
|
rec=args.rec,
|
|
cls=args.use_angle_cls,
|
|
bin=args.binarize,
|
|
inv=args.invert,
|
|
alpha_color=args.alphacolor,
|
|
)
|
|
if result is not None:
|
|
lines = []
|
|
for res in result:
|
|
for line in res:
|
|
logger.info(line)
|
|
lines.append(pprint.pformat(line) + "\n")
|
|
if args.savefile:
|
|
if os.path.exists(args.output) is False:
|
|
os.mkdir(args.output)
|
|
outfile = args.output + "/" + img_name + ".txt"
|
|
with open(outfile, "w", encoding="utf-8") as f:
|
|
f.writelines(lines)
|
|
|
|
elif args.type == "structure":
|
|
img, flag_gif, flag_pdf = check_and_read(img_path)
|
|
if not flag_gif and not flag_pdf:
|
|
img = cv2.imread(img_path)
|
|
|
|
if args.recovery and args.use_pdf2docx_api and flag_pdf:
|
|
try_import("pdf2docx")
|
|
from pdf2docx.converter import Converter
|
|
|
|
docx_file = os.path.join(args.output, "{}.docx".format(img_name))
|
|
cv = Converter(img_path)
|
|
cv.convert(docx_file)
|
|
cv.close()
|
|
logger.info("docx save to {}".format(docx_file))
|
|
continue
|
|
|
|
if not flag_pdf:
|
|
if img is None:
|
|
logger.error("error in loading image:{}".format(img_path))
|
|
continue
|
|
img_paths = [[img_path, img]]
|
|
else:
|
|
img_paths = []
|
|
for index, pdf_img in enumerate(img):
|
|
os.makedirs(os.path.join(args.output, img_name), exist_ok=True)
|
|
pdf_img_path = os.path.join(
|
|
args.output, img_name, img_name + "_" + str(index) + ".jpg"
|
|
)
|
|
cv2.imwrite(pdf_img_path, pdf_img)
|
|
img_paths.append([pdf_img_path, pdf_img])
|
|
|
|
all_res = []
|
|
for index, (new_img_path, img) in enumerate(img_paths):
|
|
logger.info("processing {}/{} page:".format(index + 1, len(img_paths)))
|
|
result = engine(img, img_idx=index)
|
|
save_structure_res(result, args.output, img_name, index)
|
|
|
|
if args.recovery and result != []:
|
|
h, w, _ = img.shape
|
|
result_cp = deepcopy(result)
|
|
result_sorted = sorted_layout_boxes(result_cp, w)
|
|
all_res += result_sorted
|
|
|
|
if args.recovery and all_res != []:
|
|
try:
|
|
convert_info_docx(img, all_res, args.output, img_name)
|
|
except Exception as ex:
|
|
logger.error(
|
|
"error in layout recovery image:{}, err msg: {}".format(
|
|
img_name, ex
|
|
)
|
|
)
|
|
continue
|
|
|
|
for item in all_res:
|
|
item.pop("Crop_img")
|
|
item.pop("res")
|
|
logger.info(item)
|
|
logger.info("result save to {}".format(args.output))
|