You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3.6 KiB
3.6 KiB
SATRN
1. 算法简介
论文信息:
On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention Junyeop Lee, Sungrae Park, Jeonghun Baek, Seong Joon Oh, Seonghyeon Kim, Hwalsuk Lee CVPR, 2020 参考DTRB 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
模型 | 骨干网络 | Avg Accuracy | 配置文件 | 下载链接 |
---|---|---|---|---|
SATRN | ShallowCNN | 88.05% | configs/rec/rec_satrn.yml | 训练模型 |
2. 环境配置
请先参考《运行环境准备》配置PaddleOCR运行环境,参考《项目克隆》克隆项目代码。
3. 模型训练、评估、预测
请参考文本识别训练教程。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要更换配置文件即可。
- 训练
在完成数据准备后,便可以启动训练,训练命令如下:
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_satrn.yml
#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_satrn.yml
- 评估
# GPU 评估, Global.pretrained_model 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
- 预测:
# 预测使用的配置文件必须与训练一致
python3 tools/infer_rec.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
4. 推理部署
4.1 Python推理
首先将SATRN文本识别训练过程中保存的模型,转换成inference model。( 模型下载地址 ),可以使用如下命令进行转换:
python3 tools/export_model.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model=./rec_satrn/best_accuracy Global.save_inference_dir=./inference/rec_satrn
SATRN文本识别模型推理,可以执行如下命令:
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_satrn/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="SATRN" --rec_char_dict_path="ppocr/utils/dict90.txt" --max_text_length=30 --use_space_char=False
4.2 C++推理
由于C++预处理后处理还未支持SATRN,所以暂未支持
4.3 Serving服务化部署
暂不支持
4.4 更多推理部署
暂不支持
5. FAQ
引用
@article{lee2019recognizing,
title={On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention},
author={Junyeop Lee and Sungrae Park and Jeonghun Baek and Seong Joon Oh and Seonghyeon Kim and Hwalsuk Lee},
year={2019},
eprint={1910.04396},
archivePrefix={arXiv},
primaryClass={cs.CV}
}