You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

190 lines
7.4 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "..", "..", "..")))
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "..", "..", "..", "tools")))
import argparse
import paddle
from paddle.jit import to_static
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import load_model
from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config, ArgsParser
from ppocr.metrics import build_metric
import tools.program as program
from paddleslim.dygraph.quant import QAT
from ppocr.data import build_dataloader, set_signal_handlers
from tools.export_model import export_single_model
def main():
############################################################################################################
# 1. quantization configs
############################################################################################################
quant_config = {
# weight preprocess type, default is None and no preprocessing is performed.
"weight_preprocess_type": None,
# activation preprocess type, default is None and no preprocessing is performed.
"activation_preprocess_type": None,
# weight quantize type, default is 'channel_wise_abs_max'
"weight_quantize_type": "channel_wise_abs_max",
# activation quantize type, default is 'moving_average_abs_max'
"activation_quantize_type": "moving_average_abs_max",
# weight quantize bit num, default is 8
"weight_bits": 8,
# activation quantize bit num, default is 8
"activation_bits": 8,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
"dtype": "int8",
# window size for 'range_abs_max' quantization. default is 10000
"window_size": 10000,
# The decay coefficient of moving average, default is 0.9
"moving_rate": 0.9,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
"quantizable_layer_type": ["Conv2D", "Linear"],
}
FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config)
config = merge_config(config, FLAGS.opt)
logger = get_logger()
# build post process
post_process_class = build_post_process(config["PostProcess"], config["Global"])
# build model
if hasattr(post_process_class, "character"):
char_num = len(getattr(post_process_class, "character"))
if config["Architecture"]["algorithm"] in [
"Distillation",
]: # distillation model
for key in config["Architecture"]["Models"]:
if (
config["Architecture"]["Models"][key]["Head"]["name"] == "MultiHead"
): # for multi head
if config["PostProcess"]["name"] == "DistillationSARLabelDecode":
char_num = char_num - 2
# update SARLoss params
assert (
list(config["Loss"]["loss_config_list"][-1].keys())[0]
== "DistillationSARLoss"
)
config["Loss"]["loss_config_list"][-1]["DistillationSARLoss"][
"ignore_index"
] = (char_num + 1)
out_channels_list = {}
out_channels_list["CTCLabelDecode"] = char_num
out_channels_list["SARLabelDecode"] = char_num + 2
config["Architecture"]["Models"][key]["Head"][
"out_channels_list"
] = out_channels_list
else:
config["Architecture"]["Models"][key]["Head"][
"out_channels"
] = char_num
elif config["Architecture"]["Head"]["name"] == "MultiHead": # for multi head
if config["PostProcess"]["name"] == "SARLabelDecode":
char_num = char_num - 2
# update SARLoss params
assert list(config["Loss"]["loss_config_list"][1].keys())[0] == "SARLoss"
if config["Loss"]["loss_config_list"][1]["SARLoss"] is None:
config["Loss"]["loss_config_list"][1]["SARLoss"] = {
"ignore_index": char_num + 1
}
else:
config["Loss"]["loss_config_list"][1]["SARLoss"]["ignore_index"] = (
char_num + 1
)
out_channels_list = {}
out_channels_list["CTCLabelDecode"] = char_num
out_channels_list["SARLabelDecode"] = char_num + 2
config["Architecture"]["Head"]["out_channels_list"] = out_channels_list
else: # base rec model
config["Architecture"]["Head"]["out_channels"] = char_num
if config["PostProcess"]["name"] == "SARLabelDecode": # for SAR model
config["Loss"]["ignore_index"] = char_num - 1
model = build_model(config["Architecture"])
# get QAT model
quanter = QAT(config=quant_config)
quanter.quantize(model)
load_model(config, model)
# build metric
eval_class = build_metric(config["Metric"])
# build dataloader
set_signal_handlers()
valid_dataloader = build_dataloader(config, "Eval", device, logger)
use_srn = config["Architecture"]["algorithm"] == "SRN"
model_type = config["Architecture"].get("model_type", None)
# start eval
metric = program.eval(
model, valid_dataloader, post_process_class, eval_class, model_type, use_srn
)
model.eval()
logger.info("metric eval ***************")
for k, v in metric.items():
logger.info("{}:{}".format(k, v))
save_path = config["Global"]["save_inference_dir"]
arch_config = config["Architecture"]
if (
arch_config["algorithm"] == "SVTR"
and arch_config["Head"]["name"] != "MultiHead"
):
input_shape = config["Eval"]["dataset"]["transforms"][-2]["SVTRRecResizeImg"][
"image_shape"
]
else:
input_shape = None
if arch_config["algorithm"] in [
"Distillation",
]: # distillation model
archs = list(arch_config["Models"].values())
for idx, name in enumerate(model.model_name_list):
sub_model_save_path = os.path.join(save_path, name, "inference")
export_single_model(
model.model_list[idx],
archs[idx],
sub_model_save_path,
logger,
input_shape,
quanter,
)
else:
save_path = os.path.join(save_path, "inference")
export_single_model(model, arch_config, save_path, logger, input_shape, quanter)
if __name__ == "__main__":
config, device, logger, vdl_writer = program.preprocess()
main()