You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

201 lines
6.2 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, "..", "..", ".."))
sys.path.append(os.path.join(__dir__, "..", "..", "..", "tools"))
import paddle
import paddle.distributed as dist
from ppocr.data import build_dataloader, set_signal_handlers
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import load_model
import tools.program as program
dist.get_world_size()
def get_pruned_params(parameters):
params = []
for param in parameters:
if (
len(param.shape) == 4
and "depthwise" not in param.name
and "transpose" not in param.name
and "conv2d_57" not in param.name
and "conv2d_56" not in param.name
):
params.append(param.name)
return params
def main(config, device, logger, vdl_writer):
# init dist environment
if config["Global"]["distributed"]:
dist.init_parallel_env()
global_config = config["Global"]
# build dataloader
set_signal_handlers()
train_dataloader = build_dataloader(config, "Train", device, logger)
if config["Eval"]:
valid_dataloader = build_dataloader(config, "Eval", device, logger)
else:
valid_dataloader = None
# build post process
post_process_class = build_post_process(config["PostProcess"], global_config)
# build model
# for rec algorithm
if hasattr(post_process_class, "character"):
char_num = len(getattr(post_process_class, "character"))
config["Architecture"]["Head"]["out_channels"] = char_num
model = build_model(config["Architecture"])
if config["Architecture"]["model_type"] == "det":
input_shape = [1, 3, 640, 640]
elif config["Architecture"]["model_type"] == "rec":
input_shape = [1, 3, 32, 320]
flops = paddle.flops(model, input_shape)
logger.info("FLOPs before pruning: {}".format(flops))
from paddleslim.dygraph import FPGMFilterPruner
model.train()
pruner = FPGMFilterPruner(model, input_shape)
# build loss
loss_class = build_loss(config["Loss"])
# build optim
optimizer, lr_scheduler = build_optimizer(
config["Optimizer"],
epochs=config["Global"]["epoch_num"],
step_each_epoch=len(train_dataloader),
model=model,
)
# build metric
eval_class = build_metric(config["Metric"])
# load pretrain model
pre_best_model_dict = load_model(config, model, optimizer)
logger.info(
"train dataloader has {} iters, valid dataloader has {} iters".format(
len(train_dataloader), len(valid_dataloader)
)
)
# build metric
eval_class = build_metric(config["Metric"])
logger.info(
"train dataloader has {} iters, valid dataloader has {} iters".format(
len(train_dataloader), len(valid_dataloader)
)
)
def eval_fn():
metric = program.eval(
model, valid_dataloader, post_process_class, eval_class, False
)
if config["Architecture"]["model_type"] == "det":
main_indicator = "hmean"
else:
main_indicator = "acc"
logger.info("metric[{}]: {}".format(main_indicator, metric[main_indicator]))
return metric[main_indicator]
run_sensitive_analysis = False
"""
run_sensitive_analysis=True:
Automatically compute the sensitivities of convolutions in a model.
The sensitivity of a convolution is the losses of accuracy on test dataset in
different pruned ratios. The sensitivities can be used to get a group of best
ratios with some condition.
run_sensitive_analysis=False:
Set prune trim ratio to a fixed value, such as 10%. The larger the value,
the more convolution weights will be cropped.
"""
if run_sensitive_analysis:
params_sensitive = pruner.sensitive(
eval_func=eval_fn,
sen_file="./deploy/slim/prune/sen.pickle",
skip_vars=[
"conv2d_57.w_0",
"conv2d_transpose_2.w_0",
"conv2d_transpose_3.w_0",
],
)
logger.info(
"The sensitivity analysis results of model parameters saved in sen.pickle"
)
# calculate pruned params's ratio
params_sensitive = pruner._get_ratios_by_loss(params_sensitive, loss=0.02)
for key in params_sensitive.keys():
logger.info("{}, {}".format(key, params_sensitive[key]))
else:
params_sensitive = {}
for param in model.parameters():
if "transpose" not in param.name and "linear" not in param.name:
# set prune ratio as 10%. The larger the value, the more convolution weights will be cropped
params_sensitive[param.name] = 0.1
plan = pruner.prune_vars(params_sensitive, [0])
flops = paddle.flops(model, input_shape)
logger.info("FLOPs after pruning: {}".format(flops))
# start train
program.train(
config,
train_dataloader,
valid_dataloader,
device,
model,
loss_class,
optimizer,
lr_scheduler,
post_process_class,
eval_class,
pre_best_model_dict,
logger,
vdl_writer,
)
if __name__ == "__main__":
config, device, logger, vdl_writer = program.preprocess(is_train=True)
main(config, device, logger, vdl_writer)