You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
201 lines
6.2 KiB
Python
201 lines
6.2 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
|
|
__dir__ = os.path.dirname(__file__)
|
|
sys.path.append(__dir__)
|
|
sys.path.append(os.path.join(__dir__, "..", "..", ".."))
|
|
sys.path.append(os.path.join(__dir__, "..", "..", "..", "tools"))
|
|
|
|
import paddle
|
|
import paddle.distributed as dist
|
|
from ppocr.data import build_dataloader, set_signal_handlers
|
|
from ppocr.modeling.architectures import build_model
|
|
from ppocr.losses import build_loss
|
|
from ppocr.optimizer import build_optimizer
|
|
from ppocr.postprocess import build_post_process
|
|
from ppocr.metrics import build_metric
|
|
from ppocr.utils.save_load import load_model
|
|
import tools.program as program
|
|
|
|
dist.get_world_size()
|
|
|
|
|
|
def get_pruned_params(parameters):
|
|
params = []
|
|
|
|
for param in parameters:
|
|
if (
|
|
len(param.shape) == 4
|
|
and "depthwise" not in param.name
|
|
and "transpose" not in param.name
|
|
and "conv2d_57" not in param.name
|
|
and "conv2d_56" not in param.name
|
|
):
|
|
params.append(param.name)
|
|
return params
|
|
|
|
|
|
def main(config, device, logger, vdl_writer):
|
|
# init dist environment
|
|
if config["Global"]["distributed"]:
|
|
dist.init_parallel_env()
|
|
|
|
global_config = config["Global"]
|
|
|
|
# build dataloader
|
|
set_signal_handlers()
|
|
train_dataloader = build_dataloader(config, "Train", device, logger)
|
|
if config["Eval"]:
|
|
valid_dataloader = build_dataloader(config, "Eval", device, logger)
|
|
else:
|
|
valid_dataloader = None
|
|
|
|
# build post process
|
|
post_process_class = build_post_process(config["PostProcess"], global_config)
|
|
|
|
# build model
|
|
# for rec algorithm
|
|
if hasattr(post_process_class, "character"):
|
|
char_num = len(getattr(post_process_class, "character"))
|
|
config["Architecture"]["Head"]["out_channels"] = char_num
|
|
model = build_model(config["Architecture"])
|
|
if config["Architecture"]["model_type"] == "det":
|
|
input_shape = [1, 3, 640, 640]
|
|
elif config["Architecture"]["model_type"] == "rec":
|
|
input_shape = [1, 3, 32, 320]
|
|
flops = paddle.flops(model, input_shape)
|
|
|
|
logger.info("FLOPs before pruning: {}".format(flops))
|
|
|
|
from paddleslim.dygraph import FPGMFilterPruner
|
|
|
|
model.train()
|
|
|
|
pruner = FPGMFilterPruner(model, input_shape)
|
|
|
|
# build loss
|
|
loss_class = build_loss(config["Loss"])
|
|
|
|
# build optim
|
|
optimizer, lr_scheduler = build_optimizer(
|
|
config["Optimizer"],
|
|
epochs=config["Global"]["epoch_num"],
|
|
step_each_epoch=len(train_dataloader),
|
|
model=model,
|
|
)
|
|
|
|
# build metric
|
|
eval_class = build_metric(config["Metric"])
|
|
# load pretrain model
|
|
pre_best_model_dict = load_model(config, model, optimizer)
|
|
|
|
logger.info(
|
|
"train dataloader has {} iters, valid dataloader has {} iters".format(
|
|
len(train_dataloader), len(valid_dataloader)
|
|
)
|
|
)
|
|
# build metric
|
|
eval_class = build_metric(config["Metric"])
|
|
|
|
logger.info(
|
|
"train dataloader has {} iters, valid dataloader has {} iters".format(
|
|
len(train_dataloader), len(valid_dataloader)
|
|
)
|
|
)
|
|
|
|
def eval_fn():
|
|
metric = program.eval(
|
|
model, valid_dataloader, post_process_class, eval_class, False
|
|
)
|
|
if config["Architecture"]["model_type"] == "det":
|
|
main_indicator = "hmean"
|
|
else:
|
|
main_indicator = "acc"
|
|
|
|
logger.info("metric[{}]: {}".format(main_indicator, metric[main_indicator]))
|
|
return metric[main_indicator]
|
|
|
|
run_sensitive_analysis = False
|
|
"""
|
|
run_sensitive_analysis=True:
|
|
Automatically compute the sensitivities of convolutions in a model.
|
|
The sensitivity of a convolution is the losses of accuracy on test dataset in
|
|
different pruned ratios. The sensitivities can be used to get a group of best
|
|
ratios with some condition.
|
|
|
|
run_sensitive_analysis=False:
|
|
Set prune trim ratio to a fixed value, such as 10%. The larger the value,
|
|
the more convolution weights will be cropped.
|
|
|
|
"""
|
|
|
|
if run_sensitive_analysis:
|
|
params_sensitive = pruner.sensitive(
|
|
eval_func=eval_fn,
|
|
sen_file="./deploy/slim/prune/sen.pickle",
|
|
skip_vars=[
|
|
"conv2d_57.w_0",
|
|
"conv2d_transpose_2.w_0",
|
|
"conv2d_transpose_3.w_0",
|
|
],
|
|
)
|
|
logger.info(
|
|
"The sensitivity analysis results of model parameters saved in sen.pickle"
|
|
)
|
|
# calculate pruned params's ratio
|
|
params_sensitive = pruner._get_ratios_by_loss(params_sensitive, loss=0.02)
|
|
for key in params_sensitive.keys():
|
|
logger.info("{}, {}".format(key, params_sensitive[key]))
|
|
else:
|
|
params_sensitive = {}
|
|
for param in model.parameters():
|
|
if "transpose" not in param.name and "linear" not in param.name:
|
|
# set prune ratio as 10%. The larger the value, the more convolution weights will be cropped
|
|
params_sensitive[param.name] = 0.1
|
|
|
|
plan = pruner.prune_vars(params_sensitive, [0])
|
|
|
|
flops = paddle.flops(model, input_shape)
|
|
logger.info("FLOPs after pruning: {}".format(flops))
|
|
|
|
# start train
|
|
|
|
program.train(
|
|
config,
|
|
train_dataloader,
|
|
valid_dataloader,
|
|
device,
|
|
model,
|
|
loss_class,
|
|
optimizer,
|
|
lr_scheduler,
|
|
post_process_class,
|
|
eval_class,
|
|
pre_best_model_dict,
|
|
logger,
|
|
vdl_writer,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
config, device, logger, vdl_writer = program.preprocess(is_train=True)
|
|
main(config, device, logger, vdl_writer)
|