172 lines
5.5 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from tqdm import tqdm
import numpy as np
import argparse
import paddle
from paddleslim.common import load_config as load_slim_config
from paddleslim.common import get_logger
from paddleslim.auto_compression import AutoCompression
from paddleslim.common.dataloader import get_feed_vars
import sys
sys.path.append("../../../")
from ppocr.data import build_dataloader
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
logger = get_logger(__name__, level=logging.INFO)
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--config_path",
type=str,
default=None,
help="path of compression strategy config.",
required=True,
)
parser.add_argument(
"--save_dir",
type=str,
default="json",
help="directory to save compressed model.",
)
parser.add_argument(
"--devices", type=str, default="gpu", help="which device used to compress."
)
return parser
def reader_wrapper(reader, input_name):
if isinstance(input_name, list) and len(input_name) == 1:
input_name = input_name[0]
def gen(): # 形成一个字典输入
for i, batch in enumerate(reader()):
yield {input_name: batch[0]}
return gen
def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
post_process_class = build_post_process(all_config["PostProcess"], global_config)
eval_class = build_metric(all_config["Metric"])
model_type = global_config["model_type"]
with tqdm(
total=len(val_loader),
bar_format="Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}",
ncols=80,
) as t:
for batch_id, batch in enumerate(val_loader):
images = batch[0]
try:
(preds,) = exe.run(
compiled_test_program,
feed={test_feed_names[0]: images},
fetch_list=test_fetch_list,
)
except:
preds, _ = exe.run(
compiled_test_program,
feed={test_feed_names[0]: images},
fetch_list=test_fetch_list,
)
batch_numpy = []
for item in batch:
batch_numpy.append(np.array(item))
if model_type == "det":
preds_map = {"maps": preds}
post_result = post_process_class(preds_map, batch_numpy[1])
eval_class(post_result, batch_numpy)
elif model_type == "rec":
post_result = post_process_class(preds, batch_numpy[1])
eval_class(post_result, batch_numpy)
t.update()
metric = eval_class.get_metric()
logger.info("metric eval ***************")
for k, v in metric.items():
logger.info("{}:{}".format(k, v))
if model_type == "det":
return metric["hmean"]
elif model_type == "rec":
return metric["acc"]
return metric
def main():
rank_id = paddle.distributed.get_rank()
if args.devices == "gpu":
place = paddle.CUDAPlace(rank_id)
paddle.set_device("gpu")
else:
place = paddle.CPUPlace()
paddle.set_device("cpu")
global all_config, global_config
all_config = load_slim_config(args.config_path)
if "Global" not in all_config:
raise KeyError(f"Key 'Global' not found in config file. \n{all_config}")
global_config = all_config["Global"]
gpu_num = paddle.distributed.get_world_size()
train_dataloader = build_dataloader(all_config, "Train", args.devices, logger)
global val_loader
val_loader = build_dataloader(all_config, "Eval", args.devices, logger)
if (
isinstance(all_config["TrainConfig"]["learning_rate"], dict)
and all_config["TrainConfig"]["learning_rate"]["type"] == "CosineAnnealingDecay"
):
steps = len(train_dataloader) * all_config["TrainConfig"]["epochs"]
all_config["TrainConfig"]["learning_rate"]["T_max"] = steps
print("total training steps:", steps)
global_config["input_name"] = get_feed_vars(
global_config["model_dir"],
global_config["model_filename"],
global_config["params_filename"],
)
ac = AutoCompression(
model_dir=global_config["model_dir"],
model_filename=global_config["model_filename"],
params_filename=global_config["params_filename"],
save_dir=args.save_dir,
config=all_config,
train_dataloader=reader_wrapper(train_dataloader, global_config["input_name"]),
eval_callback=eval_function if rank_id == 0 else None,
eval_dataloader=reader_wrapper(val_loader, global_config["input_name"]),
)
ac.compress()
if __name__ == "__main__":
paddle.enable_static()
parser = argsparser()
args = parser.parse_args()
main()