172 lines
5.5 KiB
Python
172 lines
5.5 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
import argparse
|
|
import paddle
|
|
from paddleslim.common import load_config as load_slim_config
|
|
from paddleslim.common import get_logger
|
|
from paddleslim.auto_compression import AutoCompression
|
|
from paddleslim.common.dataloader import get_feed_vars
|
|
|
|
import sys
|
|
|
|
sys.path.append("../../../")
|
|
from ppocr.data import build_dataloader
|
|
from ppocr.postprocess import build_post_process
|
|
from ppocr.metrics import build_metric
|
|
|
|
logger = get_logger(__name__, level=logging.INFO)
|
|
|
|
|
|
def argsparser():
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
parser.add_argument(
|
|
"--config_path",
|
|
type=str,
|
|
default=None,
|
|
help="path of compression strategy config.",
|
|
required=True,
|
|
)
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default="json",
|
|
help="directory to save compressed model.",
|
|
)
|
|
parser.add_argument(
|
|
"--devices", type=str, default="gpu", help="which device used to compress."
|
|
)
|
|
return parser
|
|
|
|
|
|
def reader_wrapper(reader, input_name):
|
|
if isinstance(input_name, list) and len(input_name) == 1:
|
|
input_name = input_name[0]
|
|
|
|
def gen(): # 形成一个字典输入
|
|
for i, batch in enumerate(reader()):
|
|
yield {input_name: batch[0]}
|
|
|
|
return gen
|
|
|
|
|
|
def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
|
|
post_process_class = build_post_process(all_config["PostProcess"], global_config)
|
|
eval_class = build_metric(all_config["Metric"])
|
|
model_type = global_config["model_type"]
|
|
|
|
with tqdm(
|
|
total=len(val_loader),
|
|
bar_format="Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}",
|
|
ncols=80,
|
|
) as t:
|
|
for batch_id, batch in enumerate(val_loader):
|
|
images = batch[0]
|
|
|
|
try:
|
|
(preds,) = exe.run(
|
|
compiled_test_program,
|
|
feed={test_feed_names[0]: images},
|
|
fetch_list=test_fetch_list,
|
|
)
|
|
except:
|
|
preds, _ = exe.run(
|
|
compiled_test_program,
|
|
feed={test_feed_names[0]: images},
|
|
fetch_list=test_fetch_list,
|
|
)
|
|
|
|
batch_numpy = []
|
|
for item in batch:
|
|
batch_numpy.append(np.array(item))
|
|
|
|
if model_type == "det":
|
|
preds_map = {"maps": preds}
|
|
post_result = post_process_class(preds_map, batch_numpy[1])
|
|
eval_class(post_result, batch_numpy)
|
|
elif model_type == "rec":
|
|
post_result = post_process_class(preds, batch_numpy[1])
|
|
eval_class(post_result, batch_numpy)
|
|
t.update()
|
|
metric = eval_class.get_metric()
|
|
logger.info("metric eval ***************")
|
|
for k, v in metric.items():
|
|
logger.info("{}:{}".format(k, v))
|
|
|
|
if model_type == "det":
|
|
return metric["hmean"]
|
|
elif model_type == "rec":
|
|
return metric["acc"]
|
|
return metric
|
|
|
|
|
|
def main():
|
|
rank_id = paddle.distributed.get_rank()
|
|
if args.devices == "gpu":
|
|
place = paddle.CUDAPlace(rank_id)
|
|
paddle.set_device("gpu")
|
|
else:
|
|
place = paddle.CPUPlace()
|
|
paddle.set_device("cpu")
|
|
|
|
global all_config, global_config
|
|
all_config = load_slim_config(args.config_path)
|
|
|
|
if "Global" not in all_config:
|
|
raise KeyError(f"Key 'Global' not found in config file. \n{all_config}")
|
|
global_config = all_config["Global"]
|
|
|
|
gpu_num = paddle.distributed.get_world_size()
|
|
|
|
train_dataloader = build_dataloader(all_config, "Train", args.devices, logger)
|
|
|
|
global val_loader
|
|
val_loader = build_dataloader(all_config, "Eval", args.devices, logger)
|
|
|
|
if (
|
|
isinstance(all_config["TrainConfig"]["learning_rate"], dict)
|
|
and all_config["TrainConfig"]["learning_rate"]["type"] == "CosineAnnealingDecay"
|
|
):
|
|
steps = len(train_dataloader) * all_config["TrainConfig"]["epochs"]
|
|
all_config["TrainConfig"]["learning_rate"]["T_max"] = steps
|
|
print("total training steps:", steps)
|
|
|
|
global_config["input_name"] = get_feed_vars(
|
|
global_config["model_dir"],
|
|
global_config["model_filename"],
|
|
global_config["params_filename"],
|
|
)
|
|
|
|
ac = AutoCompression(
|
|
model_dir=global_config["model_dir"],
|
|
model_filename=global_config["model_filename"],
|
|
params_filename=global_config["params_filename"],
|
|
save_dir=args.save_dir,
|
|
config=all_config,
|
|
train_dataloader=reader_wrapper(train_dataloader, global_config["input_name"]),
|
|
eval_callback=eval_function if rank_id == 0 else None,
|
|
eval_dataloader=reader_wrapper(val_loader, global_config["input_name"]),
|
|
)
|
|
ac.compress()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
paddle.enable_static()
|
|
parser = argsparser()
|
|
args = parser.parse_args()
|
|
main()
|