You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

129 lines
6.9 KiB
Markdown

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

[English](README_CN.md) | 简体中文
# PP-OCRv3 RKNPU2 C++部署示例
本目录下提供`infer.cc`, 供用户完成PP-OCRv3在RKNPU2的部署.
## 1. 部署环境准备
在部署前,需确认以下两个步骤
- 1. 在部署前需自行编译基于RKNPU2的预测库参考文档[RKNPU2部署环境编译](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#自行编译安装)
- 2. 同时请用户参考[FastDeploy RKNPU2资源导航](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/rknpu2.md)
## 2.部署模型准备
在部署前, 请准备好您所需要运行的推理模型, 您可以在[FastDeploy支持的PaddleOCR模型列表](../README.md)中下载所需模型.
同时, 在RKNPU2上部署PP-OCR系列模型时我们需要把Paddle的推理模型转为RKNN模型.
由于rknn_toolkit2工具暂不支持直接从Paddle直接转换为RKNN模型因此我们需要先将Paddle推理模型转为ONNX模型, 最后转为RKNN模型, 示例如下.
```bash
# 下载PP-OCRv3文字检测模型
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar -xvf ch_PP-OCRv3_det_infer.tar
# 下载文字方向分类器模型
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar
# 下载PP-OCRv3文字识别模型
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar -xvf ch_PP-OCRv3_rec_infer.tar
# 请用户自行安装最新发布版本的paddle2onnx, 转换模型到ONNX格式的模型
paddle2onnx --model_dir ch_PP-OCRv3_det_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
--enable_dev_version True
paddle2onnx --model_dir ch_ppocr_mobile_v2.0_cls_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
--enable_dev_version True
paddle2onnx --model_dir ch_PP-OCRv3_rec_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
--enable_dev_version True
# 固定模型的输入shape
python -m paddle2onnx.optimize --input_model ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
--output_model ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
--input_shape_dict "{'x':[1,3,960,960]}"
python -m paddle2onnx.optimize --input_model ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
--output_model ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
--input_shape_dict "{'x':[1,3,48,192]}"
python -m paddle2onnx.optimize --input_model ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
--output_model ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
--input_shape_dict "{'x':[1,3,48,320]}"
# 在rockchip/rknpu2_tools/目录下, 我们为用户提供了转换ONNX模型到RKNN模型的工具
python rockchip/rknpu2_tools/export.py --config_path tools/rknpu2/config/ppocrv3_det.yaml \
--target_platform rk3588
python rockchip/rknpu2_tools/export.py --config_path tools/rknpu2/config/ppocrv3_rec.yaml \
--target_platform rk3588
python rockchip/rknpu2_tools/export.py --config_path tools/rknpu2/config/ppocrv3_cls.yaml \
--target_platform rk3588
```
## 3.运行部署示例
在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本1.0.3以上(x.x.x>1.0.3), RKNN版本在1.4.1b22以上。
```
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/ocr/PP-OCR/rockchip/cpp
# 如果您希望从PaddleOCR下载示例代码请运行
git clone https://github.com/PaddlePaddle/PaddleOCR.git
# 注意如果当前分支找不到下面的fastdeploy测试代码请切换到dygraph分支
git checkout dygraph
cd PaddleOCR/deploy/fastdeploy/rockchip/cpp
mkdir build
cd build
# 使用编译完成的FastDeploy库编译infer_demo
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-rockchip
make -j
# 下载图片和字典文件
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# 拷贝RKNN模型到build目录
# CPU推理
./infer_demo ./ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
./ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
./ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
./ppocr_keys_v1.txt \
./12.jpg \
0
# RKNPU推理
./infer_demo ./ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer_rk3588_unquantized.rknn \
./ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v20_cls_infer_rk3588_unquantized.rknn \
./ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer_rk3588_unquantized.rknn \
./ppocr_keys_v1.txt \
./12.jpg \
1
```
运行完成可视化结果如下图所示:
<img width="640" src="https://user-images.githubusercontent.com/109218879/185826024-f7593a0c-1bd2-4a60-b76c-15588484fa08.jpg">
结果输出如下:
```text
det boxes: [[276,174],[285,173],[285,178],[276,179]]rec text: rec score:0.000000 cls label: 1 cls score: 0.766602
det boxes: [[43,408],[483,390],[483,431],[44,449]]rec text: 上海斯格威铂尔曼大酒店 rec score:0.888450 cls label: 0 cls score: 1.000000
det boxes: [[186,456],[399,448],[399,480],[186,488]]rec text: 打浦路15号 rec score:0.988769 cls label: 0 cls score: 1.000000
det boxes: [[18,501],[513,485],[514,537],[18,554]]rec text: 绿洲仕格维花园公寓 rec score:0.992730 cls label: 0 cls score: 1.000000
det boxes: [[78,553],[404,541],[404,573],[78,585]]rec text: 打浦路252935号 rec score:0.983545 cls label: 0 cls score: 1.000000
Visualized result saved in ./vis_result.jpg
```
## 4. 更多指南
- [PP-OCR系列 C++ API查阅](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/cpp/html/namespacefastdeploy_1_1vision_1_1ocr.html)
- [FastDeploy部署PaddleOCR模型概览](../../)
- [PP-OCRv3 Python部署](../python)
- [FastDeploy RKNPU2资源导航](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/rknpu2.md)
- 如果用户想要调整前后处理超参数、单独使用文字检测识别模型、使用其他模型等,更多详细文档与说明请参考[PP-OCR系列在CPU/GPU上的部署](../../cpu-gpu/cpp/README.md)