You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

81 lines
2.1 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--cls_model", required=True, help="Path of Classification model of PPOCR."
)
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file."
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.",
)
parser.add_argument(
"--device_id",
type=int,
default=0,
help="Define which GPU card used to run model.",
)
return parser.parse_args()
def build_option(args):
cls_option = fd.RuntimeOption()
if args.device.lower() == "gpu":
cls_option.use_gpu(args.device_id)
return cls_option
args = parse_arguments()
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
# Set the runtime option
cls_option = build_option(args)
# Create the cls_model
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option
)
# Set the postprocessing parameters
cls_model.postprocessor.cls_thresh = 0.9
# Read the image
im = cv2.imread(args.image)
# Predict and return the results
result = cls_model.predict(im)
# User can infer a batch of images by following code.
# result = cls_model.batch_predict([im])
print(result)