You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

51 lines
1.9 KiB
Python

import paddle
from models.losses.basic_loss import BalanceCrossEntropyLoss, MaskL1Loss, DiceLoss
class DBLoss(paddle.nn.Layer):
def __init__(self, alpha=1.0, beta=10, ohem_ratio=3, reduction="mean", eps=1e-06):
"""
Implement PSE Loss.
:param alpha: binary_map loss 前面的系数
:param beta: threshold_map loss 前面的系数
:param ohem_ratio: OHEM的比例
:param reduction: 'mean' or 'sum'对 batch里的loss 算均值或求和
"""
super().__init__()
assert reduction in ["mean", "sum"], " reduction must in ['mean','sum']"
self.alpha = alpha
self.beta = beta
self.bce_loss = BalanceCrossEntropyLoss(negative_ratio=ohem_ratio)
self.dice_loss = DiceLoss(eps=eps)
self.l1_loss = MaskL1Loss(eps=eps)
self.ohem_ratio = ohem_ratio
self.reduction = reduction
def forward(self, pred, batch):
shrink_maps = pred[:, 0, :, :]
threshold_maps = pred[:, 1, :, :]
binary_maps = pred[:, 2, :, :]
loss_shrink_maps = self.bce_loss(
shrink_maps, batch["shrink_map"], batch["shrink_mask"]
)
loss_threshold_maps = self.l1_loss(
threshold_maps, batch["threshold_map"], batch["threshold_mask"]
)
metrics = dict(
loss_shrink_maps=loss_shrink_maps, loss_threshold_maps=loss_threshold_maps
)
if pred.shape[1] > 2:
loss_binary_maps = self.dice_loss(
binary_maps, batch["shrink_map"], batch["shrink_mask"]
)
metrics["loss_binary_maps"] = loss_binary_maps
loss_all = (
self.alpha * loss_shrink_maps
+ self.beta * loss_threshold_maps
+ loss_binary_maps
)
metrics["loss"] = loss_all
else:
metrics["loss"] = loss_shrink_maps
return metrics