You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

133 lines
3.6 KiB
Markdown

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Real-time Scene Text Detection with Differentiable Binarization
**note**: some code is inherited from [WenmuZhou/DBNet.pytorch](https://github.com/WenmuZhou/DBNet.pytorch)
[中文解读](https://zhuanlan.zhihu.com/p/94677957)
![network](imgs/paper/db.jpg)
## update
2020-06-07: 添加灰度图训练,训练灰度图时需要在配置里移除`dataset.args.transforms.Normalize`
## Install Using Conda
```
conda env create -f environment.yml
git clone https://github.com/WenmuZhou/DBNet.paddle.git
cd DBNet.paddle/
```
or
## Install Manually
```bash
conda create -n dbnet python=3.6
conda activate dbnet
conda install ipython pip
# python dependencies
pip install -r requirement.txt
# clone repo
git clone https://github.com/WenmuZhou/DBNet.paddle.git
cd DBNet.paddle/
```
## Requirements
* paddlepaddle 2.4+
## Download
TBD
## Data Preparation
Training data: prepare a text `train.txt` in the following format, use '\t' as a separator
```
./datasets/train/img/001.jpg ./datasets/train/gt/001.txt
```
Validation data: prepare a text `test.txt` in the following format, use '\t' as a separator
```
./datasets/test/img/001.jpg ./datasets/test/gt/001.txt
```
- Store images in the `img` folder
- Store groundtruth in the `gt` folder
The groundtruth can be `.txt` files, with the following format:
```
x1, y1, x2, y2, x3, y3, x4, y4, annotation
```
## Train
1. config the `dataset['train']['dataset'['data_path']'`,`dataset['validate']['dataset'['data_path']`in [config/icdar2015_resnet18_fpn_DBhead_polyLR.yaml](cconfig/icdar2015_resnet18_fpn_DBhead_polyLR.yaml)
* . single gpu train
```bash
bash singlel_gpu_train.sh
```
* . Multi-gpu training
```bash
bash multi_gpu_train.sh
```
## Test
[eval.py](tools/eval.py) is used to test model on test dataset
1. config `model_path` in [eval.sh](eval.sh)
2. use following script to test
```bash
bash eval.sh
```
## Predict
[predict.py](tools/predict.py) Can be used to inference on all images in a folder
1. config `model_path`,`input_folder`,`output_folder` in [predict.sh](predict.sh)
2. use following script to predict
```
bash predict.sh
```
You can change the `model_path` in the `predict.sh` file to your model location.
tips: if result is not good, you can change `thre` in [predict.sh](predict.sh)
## Export Model
[export_model.py](tools/export_model.py) Can be used to inference on all images in a folder
use following script to export inference model
```
python tools/export_model.py --config_file config/icdar2015_resnet50_FPN_DBhead_polyLR.yaml -o trainer.resume_checkpoint=model_best.pth trainer.output_dir=output/infer
```
## Paddle Inference infer
[infer.py](tools/infer.py) Can be used to inference on all images in a folder
use following script to export inference model
```
python tools/infer.py --model-dir=output/infer/ --img-path imgs/paper/db.jpg
```
<h2 id="Performance">Performance</h2>
### [ICDAR 2015](http://rrc.cvc.uab.es/?ch=4)
only train on ICDAR2015 dataset
| Method | image size (short size) |learning rate | Precision (%) | Recall (%) | F-measure (%) | FPS |
|:--------------------------:|:-------:|:--------:|:--------:|:------------:|:---------------:|:-----:|
| ImageNet-resnet50-FPN-DBHeadtorch |736 |1e-3|90.19 | 78.14 | 83.88 | 27 |
| ImageNet-resnet50-FPN-DBHeadpaddle |736 |1e-3| 89.47 | 79.03 | 83.92 | 27 |
| ImageNet-resnet50-FPN-DBHeadpaddle_amp |736 |1e-3| 88.62 | 79.95 | 84.06 | 27 |
### examples
TBD
### reference
1. https://arxiv.org/pdf/1911.08947.pdf
2. https://github.com/WenmuZhou/DBNet.pytorch
**If this repository helps youplease star it. Thanks.**