You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
fanpt 0238726e49 添加ocr接口日志打印功能 6 months ago
..
base paddleocr 8 months ago
config 添加ocr接口日志打印功能 6 months ago
data_loader paddleocr 8 months ago
imgs/paper paddleocr 8 months ago
models paddleocr 8 months ago
post_processing paddleocr 8 months ago
test paddleocr 8 months ago
test_tipc paddleocr 8 months ago
tools 添加ocr接口日志打印功能 6 months ago
trainer paddleocr 8 months ago
utils 添加ocr接口日志打印功能 6 months ago
.gitattributes paddleocr 8 months ago
.gitignore paddleocr 8 months ago
LICENSE.md paddleocr 8 months ago
README.MD paddleocr 8 months ago
environment.yml paddleocr 8 months ago
eval.sh paddleocr 8 months ago
generate_lists.sh paddleocr 8 months ago
multi_gpu_train.sh paddleocr 8 months ago
predict.sh paddleocr 8 months ago
requirement.txt paddleocr 8 months ago
singlel_gpu_train.sh paddleocr 8 months ago

README.MD

Real-time Scene Text Detection with Differentiable Binarization

note: some code is inherited from WenmuZhou/DBNet.pytorch

中文解读

network

update

2020-06-07: 添加灰度图训练,训练灰度图时需要在配置里移除dataset.args.transforms.Normalize

Install Using Conda

conda env create -f environment.yml
git clone https://github.com/WenmuZhou/DBNet.paddle.git
cd DBNet.paddle/

or

Install Manually

conda create -n dbnet python=3.6
conda activate dbnet

conda install ipython pip

# python dependencies
pip install -r requirement.txt

# clone repo
git clone https://github.com/WenmuZhou/DBNet.paddle.git
cd DBNet.paddle/

Requirements

  • paddlepaddle 2.4+

Download

TBD

Data Preparation

Training data: prepare a text train.txt in the following format, use '\t' as a separator

./datasets/train/img/001.jpg	./datasets/train/gt/001.txt

Validation data: prepare a text test.txt in the following format, use '\t' as a separator

./datasets/test/img/001.jpg	./datasets/test/gt/001.txt
  • Store images in the img folder
  • Store groundtruth in the gt folder

The groundtruth can be .txt files, with the following format:

x1, y1, x2, y2, x3, y3, x4, y4, annotation

Train

  1. config the dataset['train']['dataset'['data_path']',dataset['validate']['dataset'['data_path']in config/icdar2015_resnet18_fpn_DBhead_polyLR.yaml
  • . single gpu train
bash singlel_gpu_train.sh
  • . Multi-gpu training
bash multi_gpu_train.sh

Test

eval.py is used to test model on test dataset

  1. config model_path in eval.sh
  2. use following script to test
bash eval.sh

Predict

predict.py Can be used to inference on all images in a folder

  1. config model_path,input_folder,output_folder in predict.sh
  2. use following script to predict
bash predict.sh

You can change the model_path in the predict.sh file to your model location.

tips: if result is not good, you can change thre in predict.sh

Export Model

export_model.py Can be used to inference on all images in a folder

use following script to export inference model

python tools/export_model.py --config_file config/icdar2015_resnet50_FPN_DBhead_polyLR.yaml -o trainer.resume_checkpoint=model_best.pth trainer.output_dir=output/infer

Paddle Inference infer

infer.py Can be used to inference on all images in a folder

use following script to export inference model

python tools/infer.py --model-dir=output/infer/ --img-path imgs/paper/db.jpg 

Performance

ICDAR 2015

only train on ICDAR2015 dataset

Method image size (short size) learning rate Precision (%) Recall (%) F-measure (%) FPS
ImageNet-resnet50-FPN-DBHeadtorch 736 1e-3 90.19 78.14 83.88 27
ImageNet-resnet50-FPN-DBHeadpaddle 736 1e-3 89.47 79.03 83.92 27
ImageNet-resnet50-FPN-DBHeadpaddle_amp 736 1e-3 88.62 79.95 84.06 27

examples

TBD

reference

  1. https://arxiv.org/pdf/1911.08947.pdf
  2. https://github.com/WenmuZhou/DBNet.pytorch

If this repository helps youplease star it. Thanks.