import os import sys import subprocess import cv2 import copy import numpy as np from PIL import Image import tools.infer.utility as utility import tools.infer.predict_rec as predict_rec import tools.infer.predict_det as predict_det import tools.infer.predict_cls as predict_cls from ppocr.utils.utility import get_image_file_list, check_and_read from tools.infer.utility import ( get_rotate_crop_image, get_minarea_rect_crop, slice_generator, merge_fragmented, ) class TextSystem(object): def __init__(self, args): self.text_detector = predict_det.TextDetector(args) self.text_recognizer = predict_rec.TextRecognizer(args) self.use_angle_cls = args.use_angle_cls self.drop_score = args.drop_score if self.use_angle_cls: self.text_classifier = predict_cls.TextClassifier(args) self.args = args self.crop_image_res_index = 0 def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res): os.makedirs(output_dir, exist_ok=True) bbox_num = len(img_crop_list) for bno in range(bbox_num): cv2.imwrite( os.path.join( output_dir, f"mg_crop_{bno + self.crop_image_res_index}.jpg" ), img_crop_list[bno], ) self.crop_image_res_index += bbox_num def __call__(self, img, cls=True, slice={}): if img is None: return None, None, {} ori_im = img.copy() if slice: slice_gen = slice_generator( img, horizontal_stride=slice["horizontal_stride"], vertical_stride=slice["vertical_stride"], ) elapsed = [] dt_slice_boxes = [] for slice_crop, v_start, h_start in slice_gen: dt_boxes, elapse = self.text_detector(slice_crop, use_slice=True) if dt_boxes.size: dt_boxes[:, :, 0] += h_start dt_boxes[:, :, 1] += v_start dt_slice_boxes.append(dt_boxes) elapsed.append(elapse) dt_boxes = np.concatenate(dt_slice_boxes) dt_boxes = merge_fragmented( boxes=dt_boxes, x_threshold=slice["merge_x_thres"], y_threshold=slice["merge_y_thres"], ) elapse = sum(elapsed) else: dt_boxes, elapse = self.text_detector(img) if dt_boxes is None: return None, None, {} img_crop_list = [] dt_boxes = sorted_boxes(dt_boxes) for bno in range(len(dt_boxes)): tmp_box = copy.deepcopy(dt_boxes[bno]) if self.args.det_box_type == "quad": img_crop = get_rotate_crop_image(ori_im, tmp_box) else: img_crop = get_minarea_rect_crop(ori_im, tmp_box) img_crop_list.append(img_crop) if self.use_angle_cls and cls: img_crop_list, angle_list, elapse = self.text_classifier(img_crop_list) if len(img_crop_list) > 1000: pass rec_res, elapse = self.text_recognizer(img_crop_list) filter_boxes, filter_rec_res = [], [] for box, rec_result in zip(dt_boxes, rec_res): text, score = rec_result[0], rec_result[1] if score >= self.drop_score: filter_boxes.append(box) filter_rec_res.append(rec_result) return filter_boxes, filter_rec_res, {} def sorted_boxes(dt_boxes): num_boxes = dt_boxes.shape[0] sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) _boxes = list(sorted_boxes) for i in range(num_boxes - 1): for j in range(i, -1, -1): if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and ( _boxes[j + 1][0][0] < _boxes[j][0][0] ): tmp = _boxes[j] _boxes[j] = _boxes[j + 1] _boxes[j + 1] = tmp else: break return _boxes def main(args): image_file_list = get_image_file_list(args.image_dir) image_file_list = image_file_list[args.process_id:: args.total_process_num] text_sys = TextSystem(args) # Warm-up (optional) if args.warmup: img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8) for i in range(10): text_sys(img) for idx, image_file in enumerate(image_file_list): img, flag_gif, flag_pdf = check_and_read(image_file) if not flag_gif and not flag_pdf: img = cv2.imread(image_file) if not flag_pdf: if img is None: continue imgs = [img] else: page_num = args.page_num if page_num > len(img) or page_num == 0: page_num = len(img) imgs = img[:page_num] for index, img in enumerate(imgs): dt_boxes, rec_res, _ = text_sys(img) # Output the recognized text for text, _ in rec_res: print(f"{text}") if __name__ == "__main__": args = utility.parse_args() if args.use_mp: p_list = [] total_process_num = args.total_process_num for process_id in range(total_process_num): cmd = ( [sys.executable, "-u"] + sys.argv + ["--process_id={}".format(process_id), "--use_mp={}".format(False)] ) p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout) p_list.append(p) for p in p_list: p.wait() else: main(args)