import paddle import numpy as np import os import paddle.nn as nn import paddleslim class PACT(paddle.nn.Layer): def __init__(self): super(PACT, self).__init__() alpha_attr = paddle.ParamAttr( name=self.full_name() + ".pact", initializer=paddle.nn.initializer.Constant(value=20), learning_rate=1.0, regularizer=paddle.regularizer.L2Decay(2e-5), ) self.alpha = self.create_parameter(shape=[1], attr=alpha_attr, dtype="float32") def forward(self, x): out_left = paddle.nn.functional.relu(x - self.alpha) out_right = paddle.nn.functional.relu(-self.alpha - x) x = x - out_left + out_right return x quant_config = { # weight preprocess type, default is None and no preprocessing is performed. "weight_preprocess_type": None, # activation preprocess type, default is None and no preprocessing is performed. "activation_preprocess_type": None, # weight quantize type, default is 'channel_wise_abs_max' "weight_quantize_type": "channel_wise_abs_max", # activation quantize type, default is 'moving_average_abs_max' "activation_quantize_type": "moving_average_abs_max", # weight quantize bit num, default is 8 "weight_bits": 8, # activation quantize bit num, default is 8 "activation_bits": 8, # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8' "dtype": "int8", # window size for 'range_abs_max' quantization. default is 10000 "window_size": 10000, # The decay coefficient of moving average, default is 0.9 "moving_rate": 0.9, # for dygraph quantization, layers of type in quantizable_layer_type will be quantized "quantizable_layer_type": ["Conv2D", "Linear"], }