Global: use_gpu: True epoch_num: 20 log_smooth_window: 20 print_batch_step: 5 save_model_dir: ./output/rec/parseq save_epoch_step: 3 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [0, 500] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/imgs_words_en/word_10.png # for data or label process character_dict_path: character_type: en max_text_length: 25 num_heads: 8 infer_mode: False use_space_char: False save_res_path: ./output/rec/predicts_parseq.txt Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: OneCycle max_lr: 0.0007 Architecture: model_type: rec algorithm: ParseQ in_channels: 3 Transform: Backbone: name: ViTParseQ img_size: [32, 128] patch_size: [4, 8] embed_dim: 384 depth: 12 num_heads: 6 mlp_ratio: 4 in_channels: 3 Head: name: ParseQHead # Architecture max_text_length: 25 embed_dim: 384 dec_num_heads: 12 dec_mlp_ratio: 4 dec_depth: 1 # Training perm_num: 6 perm_forward: true perm_mirrored: true dropout: 0.1 # Decoding mode (test) decode_ar: true refine_iters: 1 Loss: name: ParseQLoss PostProcess: name: ParseQLabelDecode Metric: name: RecMetric main_indicator: acc is_filter: True Train: dataset: name: SimpleDataSet data_dir: ./train_data/ic15_data/ label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - ParseQRecAug: aug_type: 0 # or 1 - ParseQLabelEncode: - SVTRRecResizeImg: image_shape: [3, 32, 128] padding: False - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 192 drop_last: True num_workers: 4 Eval: dataset: name: SimpleDataSet data_dir: ./train_data/ic15_data label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - ParseQLabelEncode: # Class handling label - SVTRRecResizeImg: image_shape: [3, 32, 128] padding: False - KeepKeys: keep_keys: ['image', 'label', 'length'] loader: shuffle: False drop_last: False batch_size_per_card: 384 num_workers: 4