import paddle from paddle import nn # refer from: https://github.com/ViTAE-Transformer/I3CL/blob/736c80237f66d352d488e83b05f3e33c55201317/mmdet/models/detectors/intra_cl_module.py class IntraCLBlock(nn.Layer): def __init__(self, in_channels=96, reduce_factor=4): super(IntraCLBlock, self).__init__() self.channels = in_channels self.rf = reduce_factor weight_attr = paddle.nn.initializer.KaimingUniform() self.conv1x1_reduce_channel = nn.Conv2D( self.channels, self.channels // self.rf, kernel_size=1, stride=1, padding=0 ) self.conv1x1_return_channel = nn.Conv2D( self.channels // self.rf, self.channels, kernel_size=1, stride=1, padding=0 ) self.v_layer_7x1 = nn.Conv2D( self.channels // self.rf, self.channels // self.rf, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), ) self.v_layer_5x1 = nn.Conv2D( self.channels // self.rf, self.channels // self.rf, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0), ) self.v_layer_3x1 = nn.Conv2D( self.channels // self.rf, self.channels // self.rf, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), ) self.q_layer_1x7 = nn.Conv2D( self.channels // self.rf, self.channels // self.rf, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), ) self.q_layer_1x5 = nn.Conv2D( self.channels // self.rf, self.channels // self.rf, kernel_size=(1, 5), stride=(1, 1), padding=(0, 2), ) self.q_layer_1x3 = nn.Conv2D( self.channels // self.rf, self.channels // self.rf, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), ) # base self.c_layer_7x7 = nn.Conv2D( self.channels // self.rf, self.channels // self.rf, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), ) self.c_layer_5x5 = nn.Conv2D( self.channels // self.rf, self.channels // self.rf, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), ) self.c_layer_3x3 = nn.Conv2D( self.channels // self.rf, self.channels // self.rf, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), ) self.bn = nn.BatchNorm2D(self.channels) self.relu = nn.ReLU() def forward(self, x): x_new = self.conv1x1_reduce_channel(x) x_7_c = self.c_layer_7x7(x_new) x_7_v = self.v_layer_7x1(x_new) x_7_q = self.q_layer_1x7(x_new) x_7 = x_7_c + x_7_v + x_7_q x_5_c = self.c_layer_5x5(x_7) x_5_v = self.v_layer_5x1(x_7) x_5_q = self.q_layer_1x5(x_7) x_5 = x_5_c + x_5_v + x_5_q x_3_c = self.c_layer_3x3(x_5) x_3_v = self.v_layer_3x1(x_5) x_3_q = self.q_layer_1x3(x_5) x_3 = x_3_c + x_3_v + x_3_q x_relation = self.conv1x1_return_channel(x_3) x_relation = self.bn(x_relation) x_relation = self.relu(x_relation) return x + x_relation def build_intraclblock_list(num_block): IntraCLBlock_list = nn.LayerList() for i in range(num_block): IntraCLBlock_list.append(IntraCLBlock()) return IntraCLBlock_list