# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle import ParamAttr from paddle.nn.initializer import KaimingNormal import numpy as np import paddle import paddle.nn as nn from paddle.nn.initializer import TruncatedNormal, Constant, Normal trunc_normal_ = TruncatedNormal(std=0.02) normal_ = Normal zeros_ = Constant(value=0.0) ones_ = Constant(value=1.0) def drop_path(x, drop_prob=0.0, training=False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... """ if drop_prob == 0.0 or not training: return x keep_prob = paddle.to_tensor(1 - drop_prob) shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype) random_tensor = paddle.floor(random_tensor) # binarize output = x.divide(keep_prob) * random_tensor return output class DropPath(nn.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Identity(nn.Layer): def __init__(self): super(Identity, self).__init__() def forward(self, input): return input class Mlp(nn.Layer): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Layer): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.num_heads = num_heads self.dim = dim head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): qkv = paddle.reshape( self.qkv(x), (0, -1, 3, self.num_heads, self.dim // self.num_heads) ).transpose((2, 0, 3, 1, 4)) q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] attn = q.matmul(k.transpose((0, 1, 3, 2))) attn = nn.functional.softmax(attn, axis=-1) attn = self.attn_drop(attn) x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((0, -1, self.dim)) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Layer): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer="nn.LayerNorm", epsilon=1e-6, prenorm=True, ): super().__init__() if isinstance(norm_layer, str): self.norm1 = eval(norm_layer)(dim, epsilon=epsilon) else: self.norm1 = norm_layer(dim) self.mixer = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity() if isinstance(norm_layer, str): self.norm2 = eval(norm_layer)(dim, epsilon=epsilon) else: self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp_ratio = mlp_ratio self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) self.prenorm = prenorm def forward(self, x): if self.prenorm: x = self.norm1(x + self.drop_path(self.mixer(x))) x = self.norm2(x + self.drop_path(self.mlp(x))) else: x = x + self.drop_path(self.mixer(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class ViT(nn.Layer): def __init__( self, img_size=[32, 128], patch_size=[4, 4], in_channels=3, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=False, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, norm_layer="nn.LayerNorm", epsilon=1e-6, act="nn.GELU", prenorm=False, **kwargs, ): super().__init__() self.embed_dim = embed_dim self.out_channels = embed_dim self.prenorm = prenorm self.patch_embed = nn.Conv2D( in_channels, embed_dim, patch_size, patch_size, padding=(0, 0) ) self.pos_embed = self.create_parameter( shape=[1, 257, embed_dim], default_initializer=zeros_ ) self.add_parameter("pos_embed", self.pos_embed) self.pos_drop = nn.Dropout(p=drop_rate) dpr = np.linspace(0, drop_path_rate, depth) self.blocks1 = nn.LayerList( [ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, act_layer=eval(act), attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, epsilon=epsilon, prenorm=prenorm, ) for i in range(depth) ] ) if not prenorm: self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon) self.avg_pool = nn.AdaptiveAvgPool2D([1, 25]) self.last_conv = nn.Conv2D( in_channels=embed_dim, out_channels=self.out_channels, kernel_size=1, stride=1, padding=0, bias_attr=False, ) self.hardswish = nn.Hardswish() self.dropout = nn.Dropout(p=0.1, mode="downscale_in_infer") trunc_normal_(self.pos_embed) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) def forward(self, x): x = self.patch_embed(x).flatten(2).transpose((0, 2, 1)) x = x + self.pos_embed[:, 1:, :] # [:, :x.shape[1], :] x = self.pos_drop(x) for blk in self.blocks1: x = blk(x) if not self.prenorm: x = self.norm(x) x = self.avg_pool(x.transpose([0, 2, 1]).reshape([0, self.embed_dim, -1, 25])) x = self.last_conv(x) x = self.hardswish(x) x = self.dropout(x) return x