# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import nn from ppocr.modeling.transforms import build_transform from ppocr.modeling.backbones import build_backbone from ppocr.modeling.necks import build_neck from ppocr.modeling.heads import build_head __all__ = ["BaseModel"] class BaseModel(nn.Layer): def __init__(self, config): """ the module for OCR. args: config (dict): the super parameters for module. """ super(BaseModel, self).__init__() in_channels = config.get("in_channels", 3) model_type = config["model_type"] # build transfrom, # for rec, transfrom can be TPS,None # for det and cls, transfrom shoule to be None, # if you make model differently, you can use transfrom in det and cls if "Transform" not in config or config["Transform"] is None: self.use_transform = False else: self.use_transform = True config["Transform"]["in_channels"] = in_channels self.transform = build_transform(config["Transform"]) in_channels = self.transform.out_channels # build backbone, backbone is need for del, rec and cls if "Backbone" not in config or config["Backbone"] is None: self.use_backbone = False else: self.use_backbone = True config["Backbone"]["in_channels"] = in_channels self.backbone = build_backbone(config["Backbone"], model_type) in_channels = self.backbone.out_channels # build neck # for rec, neck can be cnn,rnn or reshape(None) # for det, neck can be FPN, BIFPN and so on. # for cls, neck should be none if "Neck" not in config or config["Neck"] is None: self.use_neck = False else: self.use_neck = True config["Neck"]["in_channels"] = in_channels self.neck = build_neck(config["Neck"]) in_channels = self.neck.out_channels # # build head, head is need for det, rec and cls if "Head" not in config or config["Head"] is None: self.use_head = False else: self.use_head = True config["Head"]["in_channels"] = in_channels self.head = build_head(config["Head"]) self.return_all_feats = config.get("return_all_feats", False) def forward(self, x, data=None): y = dict() if self.use_transform: x = self.transform(x) if self.use_backbone: x = self.backbone(x) if isinstance(x, dict): y.update(x) else: y["backbone_out"] = x final_name = "backbone_out" if self.use_neck: x = self.neck(x) if isinstance(x, dict): y.update(x) else: y["neck_out"] = x final_name = "neck_out" if self.use_head: x = self.head(x, targets=data) # for multi head, save ctc neck out for udml if isinstance(x, dict) and "ctc_neck" in x.keys(): y["neck_out"] = x["ctc_neck"] y["head_out"] = x elif isinstance(x, dict): y.update(x) else: y["head_out"] = x final_name = "head_out" if self.return_all_feats: if self.training: return y elif isinstance(x, dict): return x else: return {final_name: x} else: return x