# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib from paddle.jit import to_static from paddle.static import InputSpec from .base_model import BaseModel from .distillation_model import DistillationModel __all__ = ["build_model", "apply_to_static"] def build_model(config): config = copy.deepcopy(config) if not "name" in config: arch = BaseModel(config) else: name = config.pop("name") mod = importlib.import_module(__name__) arch = getattr(mod, name)(config) return arch def apply_to_static(model, config, logger): if config["Global"].get("to_static", False) is not True: return model assert ( "d2s_train_image_shape" in config["Global"] ), "d2s_train_image_shape must be assigned for static training mode..." supported_list = ["DB", "SVTR_LCNet", "TableMaster", "LayoutXLM", "SLANet", "SVTR"] if config["Architecture"]["algorithm"] in ["Distillation"]: algo = list(config["Architecture"]["Models"].values())[0]["algorithm"] else: algo = config["Architecture"]["algorithm"] assert ( algo in supported_list ), f"algorithms that supports static training must in in {supported_list} but got {algo}" specs = [ InputSpec([None] + config["Global"]["d2s_train_image_shape"], dtype="float32") ] if algo == "SVTR_LCNet": specs.append( [ InputSpec([None, config["Global"]["max_text_length"]], dtype="int64"), InputSpec([None, config["Global"]["max_text_length"]], dtype="int64"), InputSpec([None], dtype="int64"), InputSpec([None], dtype="float64"), ] ) elif algo == "TableMaster": specs.append( [ InputSpec([None, config["Global"]["max_text_length"]], dtype="int64"), InputSpec( [None, config["Global"]["max_text_length"], 4], dtype="float32" ), InputSpec( [None, config["Global"]["max_text_length"], 1], dtype="float32" ), InputSpec([None, 6], dtype="float32"), ] ) elif algo == "LayoutXLM": specs = [ [ InputSpec(shape=[None, 512], dtype="int64"), # input_ids InputSpec(shape=[None, 512, 4], dtype="int64"), # bbox InputSpec(shape=[None, 512], dtype="int64"), # attention_mask InputSpec(shape=[None, 512], dtype="int64"), # token_type_ids InputSpec(shape=[None, 3, 224, 224], dtype="float32"), # image InputSpec(shape=[None, 512], dtype="int64"), # label ] ] elif algo == "SLANet": specs.append( [ InputSpec( [None, config["Global"]["max_text_length"] + 2], dtype="int64" ), InputSpec( [None, config["Global"]["max_text_length"] + 2, 4], dtype="float32" ), InputSpec( [None, config["Global"]["max_text_length"] + 2, 1], dtype="float32" ), InputSpec([None], dtype="int64"), InputSpec([None, 6], dtype="float64"), ] ) elif algo == "SVTR": specs.append( [ InputSpec([None, config["Global"]["max_text_length"]], dtype="int64"), InputSpec([None], dtype="int64"), ] ) model = to_static(model, input_spec=specs) logger.info("Successfully to apply @to_static with specs: {}".format(specs)) return model