# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from tqdm import tqdm import numpy as np import argparse import paddle from paddleslim.common import load_config as load_slim_config from paddleslim.common import get_logger from paddleslim.auto_compression import AutoCompression from paddleslim.common.dataloader import get_feed_vars import sys sys.path.append("../../../") from ppocr.data import build_dataloader from ppocr.postprocess import build_post_process from ppocr.metrics import build_metric logger = get_logger(__name__, level=logging.INFO) def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--config_path", type=str, default=None, help="path of compression strategy config.", required=True, ) parser.add_argument( "--save_dir", type=str, default="output", help="directory to save compressed model.", ) parser.add_argument( "--devices", type=str, default="gpu", help="which device used to compress." ) return parser def reader_wrapper(reader, input_name): if isinstance(input_name, list) and len(input_name) == 1: input_name = input_name[0] def gen(): # 形成一个字典输入 for i, batch in enumerate(reader()): yield {input_name: batch[0]} return gen def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list): post_process_class = build_post_process(all_config["PostProcess"], global_config) eval_class = build_metric(all_config["Metric"]) model_type = global_config["model_type"] with tqdm( total=len(val_loader), bar_format="Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}", ncols=80, ) as t: for batch_id, batch in enumerate(val_loader): images = batch[0] try: (preds,) = exe.run( compiled_test_program, feed={test_feed_names[0]: images}, fetch_list=test_fetch_list, ) except: preds, _ = exe.run( compiled_test_program, feed={test_feed_names[0]: images}, fetch_list=test_fetch_list, ) batch_numpy = [] for item in batch: batch_numpy.append(np.array(item)) if model_type == "det": preds_map = {"maps": preds} post_result = post_process_class(preds_map, batch_numpy[1]) eval_class(post_result, batch_numpy) elif model_type == "rec": post_result = post_process_class(preds, batch_numpy[1]) eval_class(post_result, batch_numpy) t.update() metric = eval_class.get_metric() logger.info("metric eval ***************") for k, v in metric.items(): logger.info("{}:{}".format(k, v)) if model_type == "det": return metric["hmean"] elif model_type == "rec": return metric["acc"] return metric def main(): rank_id = paddle.distributed.get_rank() if args.devices == "gpu": place = paddle.CUDAPlace(rank_id) paddle.set_device("gpu") else: place = paddle.CPUPlace() paddle.set_device("cpu") global all_config, global_config all_config = load_slim_config(args.config_path) if "Global" not in all_config: raise KeyError(f"Key 'Global' not found in config file. \n{all_config}") global_config = all_config["Global"] gpu_num = paddle.distributed.get_world_size() train_dataloader = build_dataloader(all_config, "Train", args.devices, logger) global val_loader val_loader = build_dataloader(all_config, "Eval", args.devices, logger) if ( isinstance(all_config["TrainConfig"]["learning_rate"], dict) and all_config["TrainConfig"]["learning_rate"]["type"] == "CosineAnnealingDecay" ): steps = len(train_dataloader) * all_config["TrainConfig"]["epochs"] all_config["TrainConfig"]["learning_rate"]["T_max"] = steps print("total training steps:", steps) global_config["input_name"] = get_feed_vars( global_config["model_dir"], global_config["model_filename"], global_config["params_filename"], ) ac = AutoCompression( model_dir=global_config["model_dir"], model_filename=global_config["model_filename"], params_filename=global_config["params_filename"], save_dir=args.save_dir, config=all_config, train_dataloader=reader_wrapper(train_dataloader, global_config["input_name"]), eval_callback=eval_function if rank_id == 0 else None, eval_dataloader=reader_wrapper(val_loader, global_config["input_name"]), ) ac.compress() if __name__ == "__main__": paddle.enable_static() parser = argsparser() args = parser.parse_args() main()