import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--det_model", required=True, help="Path of Detection model of PPOCR." ) parser.add_argument( "--cls_model", required=True, help="Path of Classification model of PPOCR." ) parser.add_argument( "--rec_model", required=True, help="Path of Recognization model of PPOCR." ) parser.add_argument( "--rec_label_file", required=True, help="Path of Recognization label of PPOCR." ) parser.add_argument( "--image", type=str, required=True, help="Path of test image file." ) return parser.parse_args() args = parse_arguments() # 配置runtime,加载模型 runtime_option = fd.RuntimeOption() runtime_option.use_sophgo() # Detection模型, 检测文字框 det_model_file = args.det_model det_params_file = "" # Classification模型,方向分类,可选 cls_model_file = args.cls_model cls_params_file = "" # Recognition模型,文字识别模型 rec_model_file = args.rec_model rec_params_file = "" rec_label_file = args.rec_label_file # PPOCR的cls和rec模型现在已经支持推理一个Batch的数据 # 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置 cls_batch_size = 1 rec_batch_size = 1 # 当使用TRT时,分别给三个模型的runtime设置动态shape,并完成模型的创建. # 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理. # 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数. det_option = runtime_option det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960]) # 用户可以把TRT引擎文件保存至本地 # det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt") det_model = fd.vision.ocr.DBDetector( det_model_file, det_params_file, runtime_option=det_option, model_format=fd.ModelFormat.SOPHGO, ) cls_option = runtime_option cls_option.set_trt_input_shape( "x", [1, 3, 48, 10], [cls_batch_size, 3, 48, 320], [cls_batch_size, 3, 48, 1024] ) # 用户可以把TRT引擎文件保存至本地 # cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt") cls_model = fd.vision.ocr.Classifier( cls_model_file, cls_params_file, runtime_option=cls_option, model_format=fd.ModelFormat.SOPHGO, ) rec_option = runtime_option rec_option.set_trt_input_shape( "x", [1, 3, 48, 10], [rec_batch_size, 3, 48, 320], [rec_batch_size, 3, 48, 2304] ) # 用户可以把TRT引擎文件保存至本地 # rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt") rec_model = fd.vision.ocr.Recognizer( rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option, model_format=fd.ModelFormat.SOPHGO, ) # 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None ppocr_v3 = fd.vision.ocr.PPOCRv3( det_model=det_model, cls_model=cls_model, rec_model=rec_model ) # 需要使用下行代码, 来启用rec模型的静态shape推理,这里rec模型的静态输入为[3, 48, 584] rec_model.preprocessor.static_shape_infer = True rec_model.preprocessor.rec_image_shape = [3, 48, 584] # 给cls和rec模型设置推理时的batch size # 此值能为-1, 和1到正无穷 # 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同 ppocr_v3.cls_batch_size = cls_batch_size ppocr_v3.rec_batch_size = rec_batch_size # 预测图片准备 im = cv2.imread(args.image) # 预测并打印结果 result = ppocr_v3.predict(im) print(result) # 可视化结果 vis_im = fd.vision.vis_ppocr(im, result) cv2.imwrite("sophgo_result.jpg", vis_im) print("Visualized result save in ./sophgo_result.jpg")